Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38830989

RESUMO

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWASs) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N = 52) and nonsmokers (N = 171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and correcting for multiple testing using a two-stage procedure. We found >2 million significant meQTL variants (padj < 0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects, and five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTL variants for 958 unique eGenes (padj < 0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTN1 and ITIH4 colocalized across all data types (GWAS, meQTL, and eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

2.
Sci Rep ; 14(1): 3291, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332235

RESUMO

Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFß), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Feminino , Gravidez , Placenta , Diferenciação Celular/genética , Trofoblastos/metabolismo , Proteína Morfogenética Óssea 5/metabolismo
3.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790540

RESUMO

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWAS) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N=52) and nonsmokers (N=171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and using a two-stage multiple testing approach with eigenMT and Bonferroni corrections. We found >2 million significant meQTL variants (padj<0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects; five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTLs for 958 unique eGenes (padj<0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTIN1 and ITIH4 colocalized across all data types (GWAS + meQTL + eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

4.
Nat Genet ; 55(2): 291-300, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702996

RESUMO

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.


Assuntos
Reposicionamento de Medicamentos , Transcriptoma , Humanos , Transcriptoma/genética , Estudo de Associação Genômica Ampla/métodos , Uso de Tabaco , Biologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232351

RESUMO

The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333-340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as "Tara" or "TAP68") has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Actinas/genética , Actinas/metabolismo , Aminoácidos , Transtorno Depressivo Maior/genética , Humanos , Proteínas dos Microfilamentos/metabolismo , Agregados Proteicos , Isoformas de Proteínas/genética , Esquizofrenia/metabolismo
6.
Science ; 377(6605): 511-517, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35901164

RESUMO

We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions. Somatic duplications, likely arising during development, were found in ~5% of normal and diseased brains, reflecting background mutagenesis. Brains with autism were associated with mutations creating putative transcription factor binding motifs in enhancer-like regions in the developing brain. The top-ranked affected motifs corresponded to MEIS (myeloid ectopic viral integration site) transcription factors, suggesting a potential link between their involvement in gene regulation and autism.


Assuntos
Envelhecimento , Transtorno Autístico , Encéfalo , Mutagênese , Fatores de Transcrição , Envelhecimento/genética , Transtorno Autístico/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Humanos , Mutação , Ligação Proteica/genética , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma
7.
Neuropsychopharmacology ; 46(3): 554-560, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32731254

RESUMO

Numerous DNA methylation (DNAm) biomarkers of cigarette smoking have been identified in peripheral blood studies, but because of tissue specificity, blood-based studies may not detect brain-specific smoking-related DNAm differences that may provide greater insight as neurobiological indicators of smoking and its exposure effects. We report the first epigenome-wide association study (EWAS) of smoking in human postmortem brain, focusing on nucleus accumbens (NAc) as a key brain region in developing and reinforcing addiction. Illumina HumanMethylation EPIC array data from 221 decedents (120 European American [23% current smokers], 101 African American [26% current smokers]) were analyzed. DNAm by smoking (current vs. nonsmoking) was tested within each ancestry group using robust linear regression models adjusted for age, sex, cell-type proportion, DNAm-derived negative control principal components (PCs), and genotype-derived PCs. The resulting ancestry-specific results were combined via meta-analysis. We extended our NAc findings, using published smoking EWAS results in blood, to identify DNAm smoking effects that are unique (tissue-specific) vs. shared between tissues (tissue-shared). We identified seven CpGs (false discovery rate < 0.05), of which three CpGs are located near genes previously indicated with blood-based smoking DNAm biomarkers: ZIC1, ZCCHC24, and PRKDC. The other four CpGs are novel for smoking-related DNAm changes: ABLIM3, APCDD1L, MTMR6, and CTCF. None of the seven smoking-related CpGs in NAc are driven by genetic variants that share association signals with predisposing genetic risk variants for smoking, suggesting that the DNAm changes reflect consequences of smoking. Our results provide the first evidence for smoking-related DNAm changes in human NAc, highlighting CpGs that were undetected as peripheral biomarkers and may reflect brain-specific responses to smoking exposure.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , não Fumantes , Núcleo Accumbens , Fumantes , Fumar/genética
8.
Mol Psychiatry ; 25(12): 3267-3277, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131587

RESUMO

Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)-these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Adulto , Encéfalo , Feminino , Humanos , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Análise de Sequência de RNA , Fumar/efeitos adversos , Fumar/genética , Transcriptoma/genética
9.
J Neurosci ; 40(4): 932-941, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31811028

RESUMO

Multiple schizophrenia (SCZ) risk loci may be involved in gene co-regulation mechanisms, and analysis of coexpressed gene networks may help to clarify SCZ molecular basis. We have previously identified a dopamine D2 receptor (DRD2) coexpression module enriched for SCZ risk genes and associated with cognitive and neuroimaging phenotypes of SCZ, as well as with response to treatment with antipsychotics. Here we aimed to identify regulatory factors modulating this coexpression module and their relevance to SCZ. We performed motif enrichment analysis to identify transcription factor (TF) binding sites in human promoters of genes coexpressed with DRD2. Then, we measured transcript levels of a group of these genes in primary mouse cortical neurons in basal conditions and upon overexpression and knockdown of predicted TFs. Finally, we analyzed expression levels of these TFs in dorsolateral prefrontal cortex (DLPFC) of SCZ patients. Our in silico analysis revealed enrichment for NURR1 and ERR1 binding sites. In neuronal cultures, the expression of genes either relevant to SCZ risk (Drd2, Gatad2a, Slc28a1, Cnr1) or indexing coexpression in our module (Btg4, Chit1, Osr1, Gpld1) was significantly modified by gain and loss of Nurr1 and Err1. Postmortem DLPFC expression data analysis showed decreased expression levels of NURR1 and ERR1 in patients with SCZ. For NURR1 such decreased expression is associated with treatment with antipsychotics. Our results show that NURR1 and ERR1 modulate the transcription of DRD2 coexpression partners and support the hypothesis that NURR1 is involved in the response to SCZ treatment.SIGNIFICANCE STATEMENT In the present study, we provide in silico and experimental evidence for a role of the TFs NURR1 and ERR1 in modulating the expression pattern of genes coexpressed with DRD2 in human DLPFC. Notably, genetic variations in these genes is associated with SCZ risk and behavioral and neuroimaging phenotypes of the disease, as well as with response to treatment. Furthermore, this study presents novel findings on a possible interplay between D2 receptor-mediated dopamine signaling involved in treatment with antipsychotics and the transcriptional regulation mechanisms exerted by NURR1. Our results suggest that coexpression and co-regulation mechanisms may help to explain some of the complex biology of genetic associations with SCZ.


Assuntos
Predisposição Genética para Doença , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores de Dopamina D2/genética , Receptores de Estrogênio/genética , Esquizofrenia/genética , Animais , Simulação por Computador , Redes Reguladoras de Genes , Humanos , Camundongos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas , Receptor ERRalfa Relacionado ao Estrogênio
10.
Nat Neurosci ; 19(8): 1093-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27348216

RESUMO

RNA editing is increasingly recognized as a molecular mechanism regulating RNA activity and recoding proteins. Here we surveyed the global landscape of RNA editing in human brain tissues and identified three unique patterns of A-to-I RNA editing rates during cortical development: stable high, stable low and increasing. RNA secondary structure and the temporal expression of adenosine deaminase acting on RNA (ADAR) contribute to cis- and trans-regulatory mechanisms of these RNA editing patterns, respectively. Interestingly, the increasing pattern was associated with neuronal maturation, correlated with mRNA abundance and potentially influenced miRNA binding energy. Gene ontology analyses implicated the increasing pattern in vesicle or organelle membrane-related genes and glutamate signaling pathways. We also found that the increasing pattern was selectively perturbed in spinal cord injury and glioblastoma. Our findings reveal global and dynamic aspects of RNA editing in brain, providing new insight into epitranscriptional regulation of sequence diversity.


Assuntos
Adenosina Desaminase/metabolismo , Encéfalo/crescimento & desenvolvimento , Ontologia Genética , Edição de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Diagnóstico , Humanos , Inosina/metabolismo , Proteínas de Ligação a RNA/genética
11.
J Psychiatry Neurosci ; 41(6): 386-394, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27070351

RESUMO

BACKGROUND: Neuroinflammatory processes are increasingly believed to participate in the pathophysiology of a number of major psychiatric diseases, including depression. Immune activation stimulates the conversion of the amino acid tryptophan to kynurenine, leading to the formation of neuroactive metabolites, such as quinolinic acid and kynurenic acid. These compounds affect glutamatergic neurotransmission, which plays a prominent role in depressive pathology. Increased tryptophan degradation along the kynurenine pathway (KP) has been proposed to contribute to disease etiology. METHODS: We used postmortem brain tissue from the ventrolateral prefrontal cortex (VLPFC) to assess tissue levels of tryptophan and KP metabolites, the expression of several KP enzymes and a series of cytokines as well as tissue pathology, including microglial activation. Tissue samples came from nonpsychiatric controls (n = 36) and individuals with depressive disorder not otherwise specified (DD-NOS, n = 45) who died of natural causes, homicide, accident, or suicide. RESULTS: We found a reduction in the enzymatic conversion of tryptophan to kynurenine, determined using the kynurenine:tryptophan ratio, and reduced messenger RNA expression of the enzymes indoleamine-2,3-dioxygenase 1 and 2 and tryptophan-2,3-dioxygenase in depressed individuals irrespective of the cause of death. These findings correlated with reductions in the expression of several cytokines, including interferon-γ and tumour necrosis factor-α. Notably, quinolinic acid levels were also lower in depressed individuals than controls. LIMITATIONS: Information on the use of antidepressants and other psychotropic medications was insufficient for statistical comparisons. CONCLUSION: Contrary to expectations, the present results indicate that depression, in the absence of medical illness or an overt inflammatory process, is associated with compromised, rather than increased, KP metabolism in the VLPFC.


Assuntos
Citocinas/metabolismo , Transtorno Depressivo/metabolismo , Cinurenina/metabolismo , Córtex Pré-Frontal/metabolismo , Adulto , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Reação em Cadeia da Polimerase , Córtex Pré-Frontal/patologia , RNA Mensageiro/metabolismo
12.
JAMA Psychiatry ; 73(5): 506-14, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27074206

RESUMO

IMPORTANCE: DNA methylation may play an important role in schizophrenia (SZ), either directly as a mechanism of pathogenesis or as a biomarker of risk. OBJECTIVE: To scan genome-wide DNA methylation data to identify differentially methylated CpGs between SZ cases and controls. DESIGN, SETTING, AND PARTICIPANTS: Epigenome-wide association study begun in 2008 using DNA methylation levels of 456 513 CpG loci measured on the Infinium HumanMethylation450 array (Illumina) in a consortium of case-control studies for initial discovery and in an independent replication set. Primary analyses used general linear regression, adjusting for age, sex, race/ethnicity, smoking, batch, and cell type heterogeneity. The discovery set contained 689 SZ cases and 645 controls (n = 1334), from 3 multisite consortia: the Consortium on the Genetics of Endophenotypes in Schizophrenia, the Project among African-Americans To Explore Risks for Schizophrenia, and the Multiplex Multigenerational Family Study of Schizophrenia. The replication set contained 247 SZ cases and 250 controls (n = 497) from the Genomic Psychiatry Cohort. MAIN OUTCOMES AND MEASURES: Identification of differentially methylated positions across the genome in SZ cases compared with controls. RESULTS: Of the 689 case participants in the discovery set, 477 (69%) were men and 258 (37%) were non-African American; of the 645 controls, 273 (42%) were men and 419 (65%) were non-African American. In our replication set, cases/controls were 76% male and 100% non-African American. We identified SZ-associated methylation differences at 923 CpGs in the discovery set (false discovery rate, <0.2). Of these, 625 showed changes in the same direction including 172 with P < .05 in the replication set. Some replicated differentially methylated positions are located in a top-ranked SZ region from genome-wide association study analyses. CONCLUSIONS AND RELEVANCE: This analysis identified 172 replicated new associations with SZ after careful correction for cell type heterogeneity and other potential confounders. The overlap with previous genome-wide association study data can provide potential insights into the functional relevance of genetic signals for SZ.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Transtornos Psicóticos/genética , Esquizofrenia/genética , Adulto , Negro ou Afro-Americano/genética , Ilhas de CpG/genética , Feminino , Loci Gênicos/genética , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fenótipo , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/etnologia , Esquizofrenia/diagnóstico , Esquizofrenia/etnologia , Fatores Sexuais
13.
Proc Natl Acad Sci U S A ; 109(30): 12165-70, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22689948

RESUMO

Neuregulin 1 (NRG1) and ErbB4, critical neurodevelopmental genes, are implicated in schizophrenia, but the mediating mechanisms are unknown. Here we identify a genetically regulated, pharmacologically targetable, risk pathway associated with schizophrenia and with ErbB4 genetic variation involving increased expression of a PI3K-linked ErbB4 receptor (CYT-1) and the phosphoinositide 3-kinase subunit, p110δ (PIK3CD). In human lymphoblasts, NRG1-mediated phosphatidyl-inositol,3,4,5 triphosphate [PI(3,4,5)P3] signaling is predicted by schizophrenia-associated ErbB4 genotype and PIK3CD levels and is impaired in patients with schizophrenia. In human brain, the same ErbB4 genotype again predicts increased PIK3CD expression. Pharmacological inhibition of p110δ using the small molecule inhibitor, IC87114, blocks the effects of amphetamine in a mouse pharmacological model of psychosis and reverses schizophrenia-related phenotypes in a rat neonatal ventral hippocampal lesion model. Consistent with these antipsychotic-like properties, IC87114 increases AKT phosphorylation in brains of treated mice, implicating a mechanism of action. Finally, in two family-based genetic studies, PIK3CD shows evidence of association with schizophrenia. Our data provide insight into a mechanism of ErbB4 association with schizophrenia; reveal a previously unidentified biological and disease link between NRG1-ErbB4, p110δ, and AKT; and suggest that p110δ is a previously undescribed therapeutic target for the treatment of psychiatric disorders.


Assuntos
Adenina/análogos & derivados , Receptores ErbB/metabolismo , Neuregulina-1/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Quinazolinas/farmacologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transdução de Sinais/fisiologia , Adenina/química , Adenina/farmacologia , Anfetamina/antagonistas & inibidores , Análise de Variância , Animais , Antipsicóticos/farmacologia , Linfócitos B , Western Blotting , Linhagem Celular Transformada , Classe I de Fosfatidilinositol 3-Quinases , Receptores ErbB/genética , Citometria de Fluxo , Estudos de Associação Genética , Humanos , Camundongos , Estrutura Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Quinazolinas/química , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/tratamento farmacológico
14.
Hum Mol Genet ; 19(12): 2487-96, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20360304

RESUMO

Disrupted-in-schizophrenia 1 (DISC1) has been genetically associated with schizophrenia, and with brain phenotypes including grey matter volume and working memory performance. However, the molecular and cellular basis for these associations remains to be elucidated. One potential mechanism may be via an altered interaction of DISC1 with its binding partners. In this context, we previously demonstrated that one DISC1 variant, Leu607Phe, influenced the extent of centrosomal localization of pericentriolar material 1 (PCM1) in SH-SY5Y cells. The current study extends this work to human brain, and includes another DISC1 coding variant, Ser704Cys. Using immunohistochemistry, we first characterized the distribution of PCM1 in human superior temporal gyrus (STG). PCM1 immunoreactivity was localized to the centrosome in glia, but not in neurons, which showed widespread immunoreactivity. We quantified centrosomal PCM1 immunoreactivity in STG glia of 81 controls and 67 subjects with schizophrenia, genotyped for the two polymorphisms. Centrosomal PCM1 immunoreactive area was smaller in Cys704 carriers than in Ser704 homozygotes, with a similar trend in Phe607 homozygotes compared with Leu607 carriers, replicating the finding in SH-SY5Y cells. No differences were seen between controls and subjects with schizophrenia. These findings confirm in vivo that DISC1 coding variants modulate centrosomal PCM1 localization, highlight a role for DISC1 in glial function and provide a possible cellular mechanism contributing to the association of these DISC1 variants with psychiatric phenotypes. Whether this influence of DISC1 genotype extends to other centrosomal proteins and DISC1 binding partners remains to be determined.


Assuntos
Autoantígenos/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Adulto , Substituição de Aminoácidos , Cisteína/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Serina/genética
15.
Brain Res ; 1301: 197-206, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19747464

RESUMO

Single nucleotide polymorphisms (SNPs) within the gene encoding the serine/threonine kinase KIS (Kinase Interacting with Stathmin, also known as UHMK1) have recently been associated with schizophrenia. As none of the disease associated SNPs are coding, they may confer susceptibility by altering some facet of KIS expression. Here we have characterised the cellular distribution of KIS in human brain using in situ hybridisation and immunohistochemistry, and quantified KIS protein and mRNA in two large brain series to determine if KIS expression is altered in schizophrenia or bipolar disorder or in relation to a schizophrenia-associated SNP (rs7513662). Post-mortem tissue from the superior temporal gyrus of schizophrenia and control subjects, and also dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum from schizophrenia, bipolar disorder, and control subjects were used. KIS expression was measured by quantitative PCR (mRNA) and immunoautoradiography (protein), and was also quantified by immunoblot in lymphoblast cell lines derived from schizophrenia and control subjects. Our results demonstrate that KIS is expressed in neurons, and its encoded protein is localised to the nucleus and cytoplasm. No difference in KIS expression was found between diagnostic groups, or in the lymphoblast cell lines, and no effect of rs7513662 genotype on KIS expression was found. Hence, these data do not provide support for the hypothesis that altered expression is the mechanism by which genetic variation of KIS may increase susceptibility to schizophrenia, nor evidence that KIS expression is altered in the disease itself, at least in terms of the parameters studied here.


Assuntos
Encéfalo/metabolismo , Expressão Gênica/genética , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Esquizofrenia/genética , Adulto , Idoso , Análise de Variância , Autorradiografia , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/metabolismo
16.
Nat Med ; 15(5): 509-18, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19412172

RESUMO

Organized neuronal firing is crucial for cortical processing and is disrupted in schizophrenia. Using rapid amplification of 5' complementary DNA ends in human brain, we identified a primate-specific isoform (3.1) of the ether-a-go-go-related K(+) channel KCNH2 that modulates neuronal firing. KCNH2-3.1 messenger RNA levels are comparable to full-length KCNH2 (1A) levels in brain but three orders of magnitude lower in heart. In hippocampus from individuals with schizophrenia, KCNH2-3.1 expression is 2.5-fold greater than KCNH2-1A expression. A meta-analysis of five clinical data sets (367 families, 1,158 unrelated cases and 1,704 controls) shows association of single nucleotide polymorphisms in KCNH2 with schizophrenia. Risk-associated alleles predict lower intelligence quotient scores and speed of cognitive processing, altered memory-linked functional magnetic resonance imaging signals and increased KCNH2-3.1 mRNA levels in postmortem hippocampus. KCNH2-3.1 lacks a domain that is crucial for slow channel deactivation. Overexpression of KCNH2-3.1 in primary cortical neurons induces a rapidly deactivating K(+) current and a high-frequency, nonadapting firing pattern. These results identify a previously undescribed KCNH2 channel isoform involved in cortical physiology, cognition and psychosis, providing a potential new therapeutic drug target.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Canais de Potássio Éter-A-Go-Go/genética , Regulação da Expressão Gênica , Neurônios/fisiologia , Esquizofrenia/genética , Animais , Canal de Potássio ERG1 , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Primatas , Fatores de Risco , Esquizofrenia/epidemiologia , População Branca/genética
17.
Brain Struct Funct ; 213(1-2): 255-71, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18470533

RESUMO

The molecular basis of complex neuropsychiatric disorders most likely involves many genes. In recent years, specific genetic variations influencing risk for schizophrenia and other neuropsychiatric disorders have been reported. We have used custom DNA microarrays and qPCR to investigate the expression of putative schizophrenia susceptibility genes and related genes of interest in the normal human brain. Expression of 31 genes was measured in Brodmann's area 10 (BA10) in the prefrontal cortex of 72 postmortem brain samples spanning half a century of human aging (18-67 years), each without history of neuropsychiatric illness, neurological disease, or drug abuse. Examination of expression across age allowed the identification of genes whose expression patterns correlate with age, as well as genes that share common expression patterns and that possibly participate in common cellular mechanisms related to the emergence of schizophrenia in early adult life. The expression of GRM3 and RGS4 decreased across the entire age range surveyed, while that of PRODH and DARPP-32 was shown to increase with age. NRG1, ERBB3, and NGFR show expression changes during the years of greatest risk for the development of schizophrenia. Expression of FEZ1, GAD1, and RGS4 showed especially high correlation with one another, in addition to the strongest mean levels of absolute correlation with all other genes studied here. All microarray data are available at NCBI's Gene Expression Omnibus: GEO Series accession number GSE11546 (http://www.ncbi.nlm.nih.gov/geo) [corrected]


Assuntos
Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/genética , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Fatores Etários , Idoso , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Glutamato Descarboxilase/genética , Humanos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Neuregulina-1/genética , Análise de Sequência com Séries de Oligonucleotídeos , Mudanças Depois da Morte , Córtex Pré-Frontal/patologia , Proteínas RGS/genética , Receptores de Fator de Crescimento Neural/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
18.
Hum Mol Genet ; 17(15): 2293-309, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18424448

RESUMO

Estrogen modifies human emotion and cognition and impacts symptoms of schizophrenia. We hypothesized that the variation in the estrogen receptor alpha (ESR1) gene and cortical ESR1 mRNA is associated with schizophrenia. In a small case-control genetic association analysis of postmortem brain tissue, genotype CC (rs2234693) and haplotypes containing the C allele of a single-nucleotide polymorphism (SNP) in intron1 (PvuII) were more frequent in African American schizophrenics (P = 0.01-0.001). In a follow-up family-based association analysis, we found overtransmission of PvuII allele C and a PvuII C-containing haplotype (P = 0.01-0.03) to African American and Caucasian patients with schizophrenia. Schizophrenics with the 'at risk' PvuII genotype had lower ESR1 mRNA levels in the frontal cortex. Eighteen ESR1 splice variants and decreased frequencies of the wild-type ESR1 mRNA were detected in schizophrenia. In one patient, a unique ESR1 transcript with a genomic insert encoding a premature stop codon and a truncated ESR1 protein lacking most of the estrogen binding domain was the only transcript detected. Using a luciferase assay, we found that mRNA encoding a truncated ESR1 significantly attenuates gene expression at estrogen-response elements demonstrating a dominant negative function. An intron 6 SNP [rs2273207(G)] was associated with an ESR1 splice variant missing exon seven. The T allele of another intron 6 SNP was part of a 3' haplotype less common in schizophrenia [rs2273206(T), rs2273207(G), rs2228480(G)]. Thus, the variation in the ESR1 gene is associated with schizophrenia and the mechanism of this association may involve alternative gene regulation and transcript processing.


Assuntos
Receptor alfa de Estrogênio/genética , Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Esquizofrenia/genética , Adulto , Negro ou Afro-Americano/genética , Idoso , Alelos , Processamento Alternativo , Encéfalo/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Biologia Computacional , Feminino , Genótipo , Haplótipos , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Risco , Esquizofrenia/diagnóstico , Análise de Sequência de DNA , Transcrição Gênica , População Branca/genética
19.
Hum Mol Genet ; 16(23): 2921-32, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17884806

RESUMO

Studies in cell culture and in animals suggest that neuregulin 1 (NRG1), a probable schizophrenia susceptibility gene, regulates the expression of the alpha7 nicotinic acetylcholine receptors (nAChRs). We hypothesized that schizophrenia-associated allelic variations within the NRG1 gene, via their effects on NRG1 isoform expression, would be associated with alterations in nAChR alpha7 receptor levels. We examined the effects of four disease-associated single-nucleotide polymorphisms (SNPs) in the 5' region of the NRG1 gene on nAChR alpha7 mRNA transcript expression in both the dorsolateral prefrontal cortex (DLPFC) and hippocampus of normal controls and patients with schizophrenia using quantitative real-time PCR. NRG1 risk alleles at SNPs SNP8NRG221132 and rs6994992 predicted significantly lower nAChR alpha7 mRNA expression in the DLPFC. Haplotypes containing the risk alleles at the above SNPs were also associated with lower expression of nAChR alpha7 in the DLPFC. The genotype effect for rs6994992 and the haplotype effect were more pronounced within the schizophrenic patient group. To determine whether receptor levels follow that of mRNA expression, we performed receptor binding and autoradiography using [(125)I] alpha-bungarotoxin in the DLPFC. Consistent with the mRNA findings, we found a decrease in binding in risk allele carriers of SNP8NRG221132 as compared with heterozygous individuals. Together, these results suggest that the molecular mechanism of the association between NRG1 risk alleles and schizophrenia may include down-regulation of nAChR alpha7 expression.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Alelos , Estudos de Casos e Controles , Regulação para Baixo , Expressão Gênica , Variação Genética , Haplótipos , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Neuregulina-1 , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/metabolismo , Receptores Nicotínicos/metabolismo , Fatores de Risco , Esquizofrenia/etiologia , Fumar/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
20.
J Clin Invest ; 117(3): 672-82, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17290303

RESUMO

Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32), encoded by PPP1R1B, is a pivotal integrator of information in dopaminoceptive neurons, regulating the response to neuroleptics, psychotomimetics, and drugs of abuse, and affecting striatal function and plasticity. Despite extensive preclinical work, there are almost no data on DARPP-32 function in humans. Here, we identify, through resequencing in 298 chromosomes, a frequent PPP1R1B haplotype predicting mRNA expression of PPP1R1B isoforms in postmortem human brain. This haplotype was associated with enhanced performance on several cognitive tests that depend on frontostriatal function. Multimodal imaging of healthy subjects revealed an impact of the haplotype on neostriatal volume, activation, and the functional connectivity of the prefrontal cortex. The haplotype was associated with the risk for schizophrenia in 1 family-based association analysis. Our convergent results identify a prefrontal-neostriatal system affected by variation in PPP1R1B and suggest that DARPP-32 plays a pivotal role in cognitive function and possibly in the pathogenesis of schizophrenia.


Assuntos
Cognição/fisiologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/fisiologia , Neostriado/fisiologia , Córtex Pré-Frontal/fisiologia , Esquizofrenia/genética , Cromossomos Humanos/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Haplótipos , Humanos , Neostriado/anatomia & histologia , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/anatomia & histologia , Risco , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA