Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biopolymers ; 101(6): 659-68, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24173824

RESUMO

With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide-like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide-like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single-component molecules, their peptide-like composition was captured in a new representation, called the subcomponent sequence. A novel concept called "group" was developed for representing complex peptide-like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide-like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide-like inhibitors and antibiotics accurately and consistently.


Assuntos
Antibacterianos/farmacologia , Bases de Dados de Proteínas , Peptídeos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Gramicidina/química , Gramicidina/farmacologia , Elastase Pancreática/antagonistas & inibidores , Peptídeos/química , Tioestreptona/química , Tioestreptona/farmacologia , Vancomicina/química , Vancomicina/farmacologia
2.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 2): 197-207, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16421451

RESUMO

Human glutathione transferase A1-1 is a well studied enzyme, but despite a wealth of structural and biochemical data a number of aspects of its catalytic function are still poorly understood. Here, five new crystal structures of this enzyme are described that provide several insights. Firstly, the structure of a complex of the wild-type human enzyme with glutathione was determined for the first time at 2.0 angstroms resolution. This reveals that glutathione binds in the G site in a very similar fashion as the glutathione portion of substrate analogues in other structures and also that glutathione binding alone is sufficient to stabilize the C-terminal helix of the protein. Secondly, we have studied the complex with a decarboxylated glutathione conjugate that is known to dramatically decrease the activity of the enzyme. The T68E mutant of human glutathione transferase A1-1 recovers some of the activity that is lost with the decarboxylated glutathione, but our structures of this mutant show that none of the earlier explanations of this phenomenon are likely to be correct. Thirdly, and serendipitously, the apo structures also reveal the conformation of the crucial C-terminal region that is disordered in all previous apo structures. The C-terminal region can adopt an ordered helix-like structure even in the apo state, but shows a strong tendency to unwind. Different conformations of the C-terminal regions were observed in the apo states of the two monomers, which suggests that cooperativity could play a role in the activity of the enzyme.


Assuntos
Glutationa Transferase/química , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Mutação/genética , Sítios de Ligação , Cristalografia por Raios X , Glutationa/análogos & derivados , Glutationa Transferase/genética , Humanos , Isoenzimas/genética , Modelos Moleculares , Estrutura Terciária de Proteína , Solventes/química , Termodinâmica , Água/química
3.
J Mol Biol ; 355(1): 96-105, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16298388

RESUMO

The crystal structures of wild-type human theta class glutathione-S-transferase (GST) T1-1 and its W234R mutant, where Trp234 was replaced by Arg, were solved both in the presence and absence of S-hexyl-glutathione. The W234R mutant was of interest due to its previously observed enhanced catalytic activity compared to the wild-type enzyme. GST T1-1 from rat and mouse naturally contain Arg in position 234, with correspondingly high catalytic efficiency. The overall structure of GST T1-1 is similar to that of GST T2-2, as expected from their 53% sequence identity at the protein level. Wild-type GST T1-1 has the side-chain of Trp234 occupying a significant portion of the active site. This bulky residue prevents efficient binding of both glutathione and hydrophobic substrates through steric hindrance. The wild-type GST T1-1 crystal structure, obtained from co-crystallization experiments with glutathione and its derivatives, showed no electron density for the glutathione ligand. However, the structure of GST T1-1 mutant W234R showed clear electron density for S-hexyl-glutathione after co-crystallization. In contrast to Trp234 in the wild-type structure, the side-chain of Arg234 in the mutant does not occupy any part of the substrate-binding site. Instead, Arg234 is pointing in a different direction and, in addition, interacts with the carboxylate group of glutathione. These findings explain our earlier observation that the W234R mutant has a markedly improved catalytic activity with most substrates tested to date compared to the wild-type enzyme. GST T1-1 catalyzes detoxication reactions as well as reactions that result in toxic products, and our findings therefore suggest that humans have gained an evolutionary advantage by a partially disabled active site.


Assuntos
Glutationa Transferase/química , Mutação de Sentido Incorreto , Sítios de Ligação/genética , Catálise , Cristalografia por Raios X , Glutationa/análogos & derivados , Glutationa/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA