Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 26(5): 778-787.e5, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28988825

RESUMO

Metabolic adaptations play a key role in fueling tumor growth. However, less is known regarding the metabolic changes that promote cancer progression to metastatic disease. Herein, we reveal that breast cancer cells that preferentially metastasize to the lung or bone display relatively high expression of PGC-1α compared with those that metastasize to the liver. PGC-1α promotes breast cancer cell migration and invasion in vitro and augments lung metastasis in vivo. Pro-metastatic capabilities of PGC-1α are linked to enhanced global bioenergetic capacity, facilitating the ability to cope with bioenergetic disruptors like biguanides. Indeed, biguanides fail to mitigate the PGC-1α-dependent lung metastatic phenotype and PGC-1α confers resistance to stepwise increases in metformin concentration. Overall, our results reveal that PGC-1α stimulates bioenergetic potential, which promotes breast cancer metastasis and facilitates adaptation to metabolic drugs.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Metabolismo Energético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Hipoglicemiantes/farmacologia , Metabolômica , Metformina/farmacologia , Camundongos , Camundongos SCID , Mitocôndrias/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
2.
Proc Natl Acad Sci U S A ; 110(7): 2563-8, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23359679

RESUMO

Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome.


Assuntos
Tecido Adiposo/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Células-Tronco Mesenquimais/fisiologia , PPAR gama/metabolismo , Proteínas Repressoras/metabolismo , Análise de Variância , Animais , Proteínas de Sinalização Intercelular CCN/genética , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Fatores de Transcrição/metabolismo
3.
Cancer Res ; 72(6): 1538-46, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22266114

RESUMO

Cancer cells display an increased reliance on glycolysis despite the presence of sufficient oxygen levels to support mitochondrial functions. In this study, we asked whether ameliorating mitochondrial functions in cancer cells might limit their proliferative capacity. Specifically, we increased mitochondrial metabolism in a murine cellular model of ErbB2/Neu-induced breast cancer by ectopically expressing the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a master regulator of mitochondrial metabolism. As predicted, ErbB2/Neu cells ectopically expressing PGC-1α displayed an increased level of mitochondrial metabolism and reduced proliferative capacity in vitro, compared with controls. In contrast, ErbB2/Neu cells ectopically expressing PGC-1α formed larger tumors in vivo. These tumors exhibited increased concentrations of glucose and the angiogenic factor VEGF as well as higher expression of ErbB2/Neu compared with controls. We discovered that ErbB2/Neu levels were sensitive to nutrient availability, such that reduced glucose concentrations resulted in diminished ErbB2/Neu protein levels. Therefore, our data indicate that PGC-1α prevents the nutrient-mediated downregulation of ErbB2/Neu in tumors by increasing glucose supply. Mechanistic investigations revealed that the regulation of ErbB2/Neu levels by glucose was mediated by the unfolded protein response (UPR). Incubation of ErbB2/Neu-induced breast cancer cells in limited glucose concentrations or with drugs that activate the UPR led to significant reductions in ErbB2/Neu protein levels. Also, ErbB2/Neu-induced tumors ectopically expressing PGC-1α displayed lowered UPR activation compared with controls. Together, our findings uncover an unexpected link between PGC-1α-mediated nutrient availability, UPR, and ErbB2/Neu levels.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Choque Térmico/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Receptor ErbB-2/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Glucose/análise , Glucose/metabolismo , Humanos , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Resposta a Proteínas não Dobradas
4.
Am J Physiol Endocrinol Metab ; 297(5): E1154-61, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19724021

RESUMO

Type 2 diabetes and obesity are associated with an enhanced release of a number of adipocytokines. Hyperinsulinemia, frequently present in type 2 diabetes and obesity, might be one of the drivers of the enhanced production of adipocytokines. The aim of this study was to investigate the interstitial levels of cytokines in subcutaneous adipose tissue (SCAT) in response to hyperinsulinemia and the effect of weight-reducing hypocaloric diet on this regulation in obese subjects. Thirteen obese premenopausal women participated in the study. Concentrations of seven cytokines were measured in plasma and in AT interstitial fluid collected by microdialysis during a euglycemic-hyperinsulinemic clamp and during control infusion of physiological saline. A subgroup of six women underwent a 4-wk very-low-calorie diet (VLCD). Microdialysis during the clamp was performed before and at the end of VLCD. Hyperinsulinemia induced an increase of monocyte chemoatractant protein (MCP-1) and IL-6 SCAT interstitial and plasma levels and elevated IL-8 levels in SCAT. The relative changes of IL-6 levels in the dialysate correlated with changes of IL-8 and MCP-1. The interstitial and plasma levels of IL-1ß, IL-10, TNFα, and plasminogen activator inhibitor (PAI-1) remained unchanged in response to hyperinsulinemia. VLCD resulted in enhancement of the hyperinsulinemia-induced augmentation of MCP-1, IL-6, and IL-8 interstitial levels. In conclusion, hyperinsulinemia upregulates the interstitial levels of MCP-1, IL-6, and IL-8 in SCAT in obese women, whereas it does not affect IL-1ß, IL-10, TNFα, and PAI-1 levels. Hypocaloric diet associated with weight reduction enhances the hyperinsulinemia-induced upregulation of MCP-1, IL-6, and IL-8 in SCAT.


Assuntos
Restrição Calórica , Citocinas/metabolismo , Hiperinsulinismo/metabolismo , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Quimiocina CCL2/biossíntese , Quimiocinas/metabolismo , Feminino , Técnica Clamp de Glucose , Homeostase/fisiologia , Humanos , Resistência à Insulina/fisiologia , Interleucina-6/biossíntese , Interleucina-8/metabolismo , Microdiálise , Pessoa de Meia-Idade
5.
Diabetes ; 58(7): 1558-67, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19401422

RESUMO

OBJECTIVE: We investigated the regulation of adipose tissue gene expression during different phases of a dietary weight loss program and its relation with insulin sensitivity. RESEARCH DESIGN AND METHODS: Twenty-two obese women followed a dietary intervention program composed of an energy restriction phase with a 4-week very-low-calorie diet and a weight stabilization period composed of a 2-month low-calorie diet followed by 3-4 months of a weight maintenance diet. At each time point, a euglycemic-hyperinsulinemic clamp and subcutaneous adipose tissue biopsies were performed. Adipose tissue gene expression profiling was performed using a DNA microarray in a subgroup of eight women. RT-quantitative PCR was used for determination of mRNA levels of 31 adipose tissue macrophage markers (n = 22). RESULTS: Body weight, fat mass, and C-reactive protein level decreased and glucose disposal rate increased during the dietary intervention program. Transcriptome profiling revealed two main patterns of variations. The first involved 464 mostly adipocyte genes involved in metabolism that were downregulated during energy restriction, upregulated during weight stabilization, and unchanged during the dietary intervention. The second comprised 511 mainly macrophage genes involved in inflammatory pathways that were not changed or upregulated during energy restriction and downregulated during weight stabilization and dietary intervention. Accordingly, macrophage markers were upregulated during energy restriction and downregulated during weight stabilization and dietary intervention. The increase in glucose disposal rates in each dietary phase was associated with variation in expression of sets of 80-110 genes that differed among energy restriction, weight stabilization, and dietary intervention. CONCLUSIONS: Adipose tissue macrophages and adipocytes show distinct patterns of gene regulation and association with insulin sensitivity during the various phases of a dietary weight loss program.


Assuntos
Adipócitos/patologia , Dieta Redutora , Insulina/fisiologia , Macrófagos/patologia , Obesidade/patologia , Biópsia , Peso Corporal , Proteína C-Reativa/genética , Ingestão de Energia , Perfilação da Expressão Gênica , Variação Genética , Técnica Clamp de Glucose , Humanos , Obesidade/fisiopatologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Eur J Endocrinol ; 160(4): 585-92, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19155318

RESUMO

OBJECTIVE: Adiponectin is a protein abundantly secreted by the adipose tissue (AT). Plasma adiponectin levels are decreased in obese, insulin-resistant, and type 2 diabetic patients. Various multimeric complexes, i.e. high-, middle-, and low-molecular weight isoforms (HMW, MMW and LMW), are present in plasma. Here, we investigated the effect of weight reducing diet on the distribution of adiponectin isoforms in plasma and on their secretion in AT explants from obese subjects. DESIGN: A total of 20 obese subjects (age 37.8+/-7.3 years, body mass index 33.9+/-5.0 kg/m(2)) underwent eight weeks of very low-calorie diet (VLCD). A needle biopsy of subcutaneous abdominal AT and blood samples were taken before and after dietary intervention. AT explants were incubated in culture medium for 4 h. ELISA assay and western blot analyses were used to identify adiponectin complexes in culture media and in plasma. RESULTS: The distribution of adiponectin polymers in plasma was different from that secreted in human AT explants. Before VLCD, the relative amount of HMW isoform was 75.5+/-9.1% of total adiponectin in culture media and 52.2+/-11.2% in plasma. Despite the diet-induced weight loss and improvement of insulin sensitivity, VLCD neither induced change in total adiponectin level nor in the ratio of HMW to total adiponectin in plasma and in culture media of AT explants. CONCLUSIONS: The profile of adiponectin polymeric isoforms secreted by AT explants into culture media differs from the plasma profile. A dietary intervention leading to weight loss and improvement of insulin sensitivity was not associated with modifications of AT secretion of total or HMW adiponectin.


Assuntos
Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Restrição Calórica , Adiponectina/química , Adulto , Biópsia por Agulha , Western Blotting , Estatura/fisiologia , Peso Corporal/fisiologia , Meios de Cultura , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Cinética , Luminescência , Masculino , Peso Molecular , Obesidade/dietoterapia , Obesidade/metabolismo , Polímeros/química , Polímeros/metabolismo , Técnicas de Cultura de Tecidos , Relação Cintura-Quadril , Redução de Peso/fisiologia
7.
Diabetes ; 56(10): 2467-75, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17646210

RESUMO

OBJECTIVE: The purpose of this work was to determine the pattern of genes regulated by peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 alpha (PGC-1 alpha) in human adipocytes and the involvement of PPARalpha and PPARgamma in PGC-1 alpha transcriptional action. RESEARCH DESIGN AND METHODS: Primary cultures of human adipocytes were transduced with a PGC-1 alpha adenovirus and treated with PPARgamma and PPARalpha agonists. Variation in gene expression was assessed using pangenomic microarrays and quantitative RT-PCR. To investigate glycerol kinase (GyK), a target of PGC-1 alpha, we measured enzymatic activity and glycerol incorporation into triglycerides. In vivo studies were performed on wild-type and PPARalpha(-/-) mice. The GyK promoter was studied using chromatin immunoprecipitation and promoter reporter gene assays. RESULTS: Among the large number of genes regulated by PGC-1 alpha independently of PPARgamma, new targets involved in metabolism included the gene encoding GyK. The induction of GyK by PGC-1 alpha was observed at the levels of mRNA, enzymatic activity, and glycerol incorporation into triglycerides. PPARalpha was also upregulated by PGC-1 alpha. Its activation led to an increase in GyK expression and activity. PPARalpha was shown to bind and activate the GyK promoter. Experiments in mice confirmed the role of PGC-1 alpha and PPARalpha in the regulation of GyK in vivo. CONCLUSIONS: This work uncovers novel pathways regulated by PGC-1 alpha and reveals that PPARalpha controls gene expression in human white adipocytes. The induction of GyK by PGC-1 alpha and PPARalpha may promote a futile cycle of triglyceride hydrolysis and fatty acid reesterification.


Assuntos
Adipócitos/fisiologia , Regulação Enzimológica da Expressão Gênica , Glicerol Quinase/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , PPAR alfa/genética , PPAR gama/genética , PPAR gama/fisiologia , Regulação da Expressão Gênica , Glicerol Quinase/metabolismo , Humanos , Coativadores de Receptor Nuclear , PPAR alfa/fisiologia
8.
Biochem Biophys Res Commun ; 358(3): 897-902, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17511960

RESUMO

The role of PPARs in the regulation of human adipose tissue secretome has received little attention despite its potential importance in the therapeutic actions of PPAR agonists. Here, we have investigated the effect of selective PPARgamma, PPARalpha, and PPARbeta/delta agonists on the production of adipokines by human subcutaneous adipose tissue. Antibody arrays were used to measure secreted factors in media from cultured adipose tissue explants. Sixteen proteins were produced in significant amounts. Activation of PPARs regulated the production of five proteins. Treatments with the three PPAR agonists decreased the secretion of leptin and interleukin-6. PPARalpha and beta/delta agonists markedly enhanced hepatocyte growth factor secretion whereas PPARbeta/delta down-regulated angiogenin and up-regulated TIMP-1 release. Hepatocyte growth factor, interleukin-6, and TIMP-1 are chiefly expressed in cells from the stromal vascular fraction whereas angiogenin is expressed in both adipocytes and cells from the stromal vascular fraction. Our data show that PPAR agonists modulate secretion of bioactive molecules from the different cell types composing human adipose tissue.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Gordura Subcutânea/metabolismo , Adipócitos/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Interleucina-6/metabolismo , Leptina/metabolismo , Obesidade , Proteômica/métodos , RNA Mensageiro/metabolismo
9.
Metabolism ; 55(10): 1375-81, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16979409

RESUMO

Adipocytokines secreted by adipose tissue are suggested to play a role in the development of obesity-related complications. Regular aerobic exercise has been shown to reduce the risk of metabolic complications in obese subjects. The aim of this study was to investigate the effect of aerobic training on gene expression in subcutaneous abdominal adipose tissue (SCAAT) and on plasma levels of several adipocytokines in obese women. Twenty-five obese sedentary premenopausal women (body mass index, 32.18 +/- 3.17 kg/m(2)) underwent a 12-week aerobic exercise program, with a frequency of 5 d/wk and intensity corresponding to 50% of individual maximal oxygen consumption (V(.-)(O(2)max)) consisting of 2 sessions per week of supervised aerobic exercise and 3 sessions per week of home-based exercise on a bicycle ergometer. Before and after the aerobic training, (V(.-)(O(2)max)) and body composition were measured and plasma and SCAAT biopsy samples (in a subgroup of 8 subjects) were obtained for determination of plasma and messenger RNA levels of adipocytokines (leptin, adiponectin, interleukin 6, tumor necrosis factor alpha). The aerobic training resulted in an increase of subjects' V o(2)max by 12.8% (24.6 +/- 3.9 vs 27.7 +/- 4.8 mL x min(-1) x kg(-1), P < .05). Body weight and fat mass were reduced by 5.9% (88.5 +/- 8.2 vs 83.3 +/- 7.7 kg, P < .001) and 6.4% (38.8 +/- 4.2% vs 36.3 +/- 4.6%, P < .001), respectively, and the revised QUantitative Insulin sensitivity ChecK Index (QUICKI) increased (0.43 +/- 0.06 vs 0.48 +/- 0.06, P < .05) during the aerobic training. No aerobic training-induced changes in messenger RNA levels of the investigated genes in SCAAT were observed. A decrease of plasma leptin (24.3 +/- 8.7 vs 18.1 +/- 8.3 ng/mL, P < .05) was detected, whereas plasma levels of other cytokines remained unchanged. In moderately obese females, 3 months' aerobic training did not promote changes in the adipose tissue gene expression or plasma levels of the adipocytokines (except for leptin) involved in a regulation of lipid and carbohydrate metabolism.


Assuntos
Gordura Abdominal/metabolismo , Adiponectina/biossíntese , Tecido Adiposo/metabolismo , Exercício Físico/fisiologia , Interleucina-6/biossíntese , Obesidade/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Adiponectina/genética , Adulto , Glicemia/metabolismo , Composição Corporal , Dieta , Feminino , Humanos , Interleucina-6/genética , Cinética , Obesidade/genética , Consumo de Oxigênio/fisiologia , Aptidão Física , Estudos Prospectivos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/genética
10.
Am J Physiol Endocrinol Metab ; 290(5): E864-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16291573

RESUMO

Atrial natriuretic peptide (ANP) controls lipolysis in human adipocytes. Lipid mobilization is increased during repeated bouts of exercise, but the underlying mechanisms involved in this process have not yet been delineated. The relative involvement of catecholamine- and ANP-dependent pathways in the control of lipid mobilization during repeated bouts of exercise was thus investigated in subcutaneous adipose tissue (SCAT) by microdialysis. The study was performed in healthy males. Subjects performed two 45-min exercise bouts (E1 and E2) at 50% of their maximal oxygen uptake separated by a 60-min rest period. Extracellular glycerol concentration (EGC), reflecting SCAT lipolysis, was measured in a control probe perfused with Ringer solution and in two other probes perfused with either Ringer plus phentolamine (alpha(1/2)-AR antagonist) or Ringer plus both phentolamine and propranolol (beta-AR antagonist). Plasma epinephrine, plasma glycerol, and EGC were 1.7-, 1.6-, and 1.2-fold higher in E2 than in E1, respectively. Phentolamine potentiated exercise-induced EGC increase during E2 only. Propranolol reduced the lipolytic rate during both E1 and E2 compared with the probe with phentolamine. Plasma ANP concentration increased more during E2 than during E1 and was correlated with the increase in EGC in the probe containing phentolamine plus propranolol. The results suggest that ANP is involved in the control of lipolysis during exercise and that it contributes to stimulation of lipolysis during repeated bouts of exercise.


Assuntos
Fator Natriurético Atrial/sangue , Exercício Físico/fisiologia , Lipólise/fisiologia , Resistência Física/fisiologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adulto , Fator Natriurético Atrial/fisiologia , Glicemia/metabolismo , Catecolaminas/sangue , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Epinefrina/sangue , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Ácidos Graxos não Esterificados/sangue , Glicerol/sangue , Glicerol/metabolismo , Hormônio do Crescimento/sangue , Frequência Cardíaca/fisiologia , Humanos , Insulina/sangue , Masculino , Microdiálise , Norepinefrina/sangue , Fentolamina/farmacologia , Propranolol/farmacologia , Fluxo Sanguíneo Regional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA