Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Mol Biol ; 18(1): 19, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28728573

RESUMO

BACKGROUND: RBM10 is an RNA binding protein involved in message stabilization and alternative splicing regulation. The objective of the research described herein was to identify novel targets of RBM10-regulated splicing. To accomplish this, we downregulated RBM10 in human cell lines, using small interfering RNAs, then monitored alternative splicing, using a reverse transcription-PCR screening platform. RESULTS: RBM10 knockdown (KD) provoked alterations in splicing events in 10-20% of the pre-mRNAs, most of which had not been previously identified as RBM10 targets. Hierarchical clustering of the genes affected by RBM10 KD revealed good conservation of alternative exon inclusion or exclusion across cell lines. Pathway annotation showed RAS signaling to be most affected by RBM10 KD. Of particular interest was the finding that splicing of SMN pre-mRNA, encoding the survival of motor neuron (SMN) protein, was influenced by RBM10 KD. Inhibition of RBM10 resulted in preferential expression of the full-length, exon 7 retaining, SMN transcript in four cancer cell lines and one normal skin fibroblast cell line. SMN protein is expressed from two genes, SMN1 and SMN2, but the SMN1 gene is homozygously disrupted in people with spinal muscular atrophy; as a consequence, all of the SMN that is expressed in people with this disease is from the SMN2 gene. Expression analyses using primary fibroblasts from control, carrier and spinal muscle atrophy donors demonstrated that RBM10 KD resulted in preferential expression of the full-length, exon 7 retaining, SMN2 transcript. At the protein level, upregulation of the full-length SMN2 was also observed. Re-expression of RBM10, in a stable RBM10 KD cancer cell line, correlated with a reversion of the KD effect, demonstrating specificity. CONCLUSION: Our work has not only expanded the number of pre-mRNA targets for RBM10, but identified RBM10 as a novel regulator of SMN2 alternative inclusion.


Assuntos
Precursores de RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Linhagem Celular , Análise por Conglomerados , Biologia Computacional/métodos , Éxons , Fibroblastos , Perfilação da Expressão Gênica , Humanos , Reprodutibilidade dos Testes , Transdução de Sinais , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteínas ras/metabolismo
2.
Sci Rep ; 5: 14301, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26391193

RESUMO

The SOCS1 (Suppressor Of Cytokine Signalling 1) protein is considered a tumour suppressor. Notably, the SOCS1 gene is frequently silenced in cancer by hypermethylation of its promoter. Besides blocking inflammation, SOCS1 tumour suppressor activity involves Met receptor inhibition and enhancement of p53 tumour suppressor activity. However, the role of SOCS1 in colorectal cancer (CRC) remains understudied and controversial. Here, we investigated SOCS1 relevance for CRC by querying gene expression datasets of human CRC specimens from The Cancer Genome Atlas (TCGA), and by SOCS1 gain/loss-of-function analyses in murine and human colon carcinoma cells. Our results show that SOCS1 mRNA levels in tumours were more often elevated than reduced with respect to matched adjacent normal tissue of CRC specimens (n = 41). The analysis of TCGA dataset of 431 CRC patients revealed no correlation between SOCS1 expression and overall survival. Overexpression of SOCS1 in CRC cells triggered cell growth enhancement, anchorage-independent growth and resistance to death stimuli, whereas knockdown of SOCS1 reduced these oncogenic features. Moreover, SOCS1 overexpression in mouse CT26 cells increased tumourigenesis in vivo. Biochemical analyses showed that SOCS1 pro-oncogenic activity correlated with the down-modulation of STAT1 expression. Collectively, these results suggest that SOCS1 may work as an oncogene in CRC.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas Supressoras da Sinalização de Citocina/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Interferon gama/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
3.
BMC Cancer ; 15: 227, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25884497

RESUMO

BACKGROUND: Modification of splicing by chemotherapeutic drugs has usually been evaluated on a limited number of pre-mRNAs selected for their recognized or potential importance in cell proliferation or apoptosis. However, the pathways linking splicing alterations to the efficiency of cancer therapy remain unclear. METHODS: Next-generation sequencing was used to analyse the transcriptome of breast carcinoma cells treated by cisplatin. Pharmacological inhibitors, RNA interference, cells deficient in specific signalling pathways, RT-PCR and FACS analysis were used to investigate how the anti-cancer drug cisplatin affected alternative splicing and the cell death pathway. RESULTS: We identified 717 splicing events affected by cisplatin, including 245 events involving cassette exons. Gene ontology analysis indicates that cell cycle, mRNA processing and pre-mRNA splicing were the main pathways affected. Importantly, the cisplatin-induced splicing alterations required class I PI3Ks P110ß but not components such as ATM, ATR and p53 that are involved in the DNA damage response. The siRNA-mediated depletion of the splicing regulator SRSF4, but not SRSF6, expression abrogated many of the splicing alterations as well as cell death induced by cisplatin. CONCLUSION: Many of the splicing alterations induced by cisplatin are caused by SRSF4 and they contribute to apoptosis in a process requires class I PI3K.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Precursores de RNA/genética , Splicing de RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Dano ao DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Fatores de Processamento de Serina-Arginina , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Nat Commun ; 5: 4760, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25208576

RESUMO

Alternative splicing--the production of multiple messenger RNA isoforms from a single gene--is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha (Tra2α) and Tra2ß have both been implicated in the regulation of alternative splicing, their relative contributions to this process are not well understood. Here we find simultaneous--but not individual--depletion of Tra2α and Tra2ß induces substantial shifts in splicing of endogenous Tra2ß target exons, and that both constitutive and alternative target exons are under dual Tra2α-Tra2ß control. Target exons are enriched in genes associated with chromosome biology including CHEK1, which encodes a key DNA damage response protein. Dual Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the accumulation of the DNA damage marker γH2AX and decreased cell viability. We conclude Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog compensation to control pathways essential to the maintenance of cell viability.


Assuntos
Processamento Alternativo , Éxons , Proteínas do Tecido Nervoso/metabolismo , Proteínas Quinases/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Humanos , Células MCF-7 , Proteínas Quinases/metabolismo , Fatores de Processamento de Serina-Arginina
5.
RNA ; 20(2): 189-201, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335142

RESUMO

Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.


Assuntos
Processamento Alternativo , Neoplasias Ovarianas/metabolismo , RNA Mensageiro/genética , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Especificidade de Órgãos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas Repressoras/fisiologia , Células Estromais/metabolismo , Microambiente Tumoral
6.
Mod Pathol ; 26(11): 1413-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23743930

RESUMO

Great advances in analytical technology coupled with accelerated new drug development and growing understanding of biological challenges, such as tumor heterogeneity, have required a change in the focus for biobanking. Most current banks contain samples of primary tumors, but linking molecular signatures to therapeutic questions requires serial biopsies in the setting of metastatic disease, next-generation of biobanking. Furthermore, an integration of multidimensional analysis of various molecular components, that is, RNA, DNA, methylome, microRNAome and post-translational modifications of the proteome, is necessary for a comprehensive view of a tumor's biology. While data using such biopsies are now regularly presented, the preanalytical variables in tissue procurement and processing in multicenter studies are seldom detailed and therefore are difficult to duplicate or standardize across sites and across studies. In the context of a biopsy-driven clinical trial, we generated a detailed protocol that includes morphological evaluation and isolation of high-quality nucleic acids from small needle core biopsies obtained from liver metastases. The protocol supports stable shipping of samples to a central laboratory, where biopsies are subsequently embedded in support media. Designated pathologists must evaluate all biopsies for tumor content and macrodissection can be performed if necessary to meet our criteria of >60% neoplastic cells and <20% necrosis for genomic isolation. We validated our protocol in 40 patients who participated in a biopsy-driven study of therapeutic resistance in metastatic colorectal cancer. To ensure that our protocol was compatible with multiplex discovery platforms and that no component of the processing interfered with downstream enzymatic reactions, we performed array comparative genomic hybridization, methylation profiling, microRNA profiling, splicing variant analysis and gene expression profiling using genomic material isolated from liver biopsy cores. Our standard operating procedures for next-generation biobanking can be applied widely in multiple settings, including multicentered and international biopsy-driven trials.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Testes Genéticos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Medicina de Precisão , Bancos de Tecidos , Processamento Alternativo , Biópsia com Agulha de Grande Calibre , Canadá , Hibridização Genômica Comparativa , Metilação de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/análise , Análise de Sequência com Séries de Oligonucleotídeos , Seleção de Pacientes , Fenótipo , Medicina de Precisão/métodos , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Manejo de Espécimes , Fluxo de Trabalho
7.
Mol Cell Biol ; 33(2): 396-405, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23149937

RESUMO

Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Éxons , Feto/citologia , Feto/metabolismo , Perfilação da Expressão Gênica , Células HeLa , Humanos , Células-Tronco Mesenquimais/citologia , Interferência de RNA , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Eur J Immunol ; 42(9): 2491-504, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22736313

RESUMO

In T cells, two members of the Dok family, Dok-1 and Dok-2, are predominantly expressed. Recent evidence suggests that they play a negative role in T-cell signaling. In order to define whether Dok proteins regulate T-cell development, we have generated transgenic mice overexpressing Dok-1 in thymocytes and peripheral T cells. We show that overexpression of Dok-1 retards the transition from the CD4(-) CD8(-) to CD4(+) CD8(+) stage. Moreover, there is a specific expansion of PLZF-expressing Vγ1.1(+) Vδ6.3(+) T cells. This subset of γδ T cells acquires innate characteristics including rapid IL-4 production following stimulation and requiring SLAM-associated adaptor protein (SAP) for their development. Moreover, Dok-1 overexpression promotes the generation of an innate-like CD8(+) T-cell population that expresses Eomesodermin. Altogether, these findings identify a novel role for Dok-1 in the regulation of thymic differentiation and in particular, in the development of PLZF(+) γδ T cells.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Células T Matadoras Naturais/metabolismo , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfoproteínas/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Proteínas de Ligação a RNA/metabolismo , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária
9.
PLoS One ; 7(2): e32172, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384171

RESUMO

The inhibition of the functions of c-Myc (endogenous and oncogenic) was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max*) behaves as a bona fide protein transduction domain (PTD) that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Regulação da Expressão Gênica , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/química , Ciclo Celular , Proliferação de Células , DNA Complementar/metabolismo , Dimerização , Endocitose , Células HeLa , Humanos , Microscopia Confocal/métodos , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo , Transferrina/química
10.
BMC Cancer ; 11: 285, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21722370

RESUMO

BACKGROUND: Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. METHODS: Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. RESULTS: Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT29 and SW620 express higher levels of a splice variant of DR3 that has no trans-membrane domain and no death domain. CONCLUSION: Colon cancer cells acquire an increased capacity to survive via the activation of the PI3K/NFκB pathway following the stimulation of DR3 by E-selectin. Generation of a DR3 splice variant devoid of death domain can further contribute to protect against apoptosis.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Selectina E/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Apoptose/fisiologia , Adesão Celular , Sobrevivência Celular/fisiologia , Cromonas/farmacologia , Células HT29 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Jurkat , Sistema de Sinalização das MAP Quinases , Microscopia de Fluorescência , Dados de Sequência Molecular , Morfolinas/farmacologia , Metástase Neoplásica , Fosforilação , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/química , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Quinases da Família src/metabolismo
11.
Nat Struct Mol Biol ; 18(6): 673-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21552259

RESUMO

Most human genes produce multiple mRNA isoforms through alternative splicing. However, the biological relevance of most splice variants remains unclear. In this study, we evaluated the functional impact of alternative splicing in cancer cells. We modulated the splicing pattern of 41 cancer-associated splicing events and scored the effects on cell growth, viability and apoptosis, identifying three isoforms essential for cell survival. Specifically, changing the splicing pattern of the spleen tyrosine kinase gene (SYK) impaired cell-cycle progression and anchorage-independent growth. Notably, exposure of cancer cells to epithelial growth factor modulated the SYK splicing pattern to promote the pro-survival isoform that is associated with cancer tissues in vivo. The data suggest that splicing of selected genes is specifically modified during tumor development to allow the expression of isoforms that promote cancer cell survival.


Assuntos
Processamento Alternativo , Sobrevivência Celular , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitose , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/genética , Apoptose , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Humanos , Quinase Syk
12.
Hum Mol Genet ; 20(11): 2116-30, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21378395

RESUMO

Proteins PRPF31, PRPF3 and PRPF8 (RP-PRPFs) are ubiquitously expressed components of the spliceosome, a macromolecular complex that processes nearly all pre-mRNAs. Although these spliceosomal proteins are conserved in eukaryotes and are essential for survival, heterozygous mutations in human RP-PRPF genes lead to retinitis pigmentosa, a hereditary disease restricted to the eye. Using cells from patients with 10 different mutations, we show that all clinically relevant RP-PRPF defects affect the stoichiometry of spliceosomal small nuclear RNAs (snRNAs), the protein composition of tri-small nuclear ribonucleoproteins and the kinetics of spliceosome assembly. These mutations cause inefficient splicing in vitro and affect constitutive splicing ex-vivo by impairing the removal of at least 9% of endogenously expressed introns. Alternative splicing choices are also affected when RP-PRPF defects are present. Furthermore, we show that the steady-state levels of snRNAs and processed pre-mRNAs are highest in the retina, indicating a particularly elevated splicing activity. Our results suggest a role for PRPFs defects in the etiology of PRPF-linked retinitis pigmentosa, which appears to be a truly systemic splicing disease. Although these mutations cause widespread and important splicing defects, they are likely tolerated by the majority of human tissues but are critical for retinal cell survival.


Assuntos
Precursores de RNA/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , Retinose Pigmentar/genética , Spliceossomos/patologia , Processamento Alternativo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Genes Dominantes , Heterozigoto , Humanos , Íntrons , Masculino , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA , Retina/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo
13.
Nat Struct Mol Biol ; 16(7): 717-24, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19543290

RESUMO

When targeting promoter regions, small interfering RNAs (siRNAs) trigger a previously proposed pathway known as transcriptional gene silencing by promoting heterochromatin formation. Here we show that siRNAs targeting intronic or exonic sequences close to an alternative exon regulate the splicing of that exon. The effect occurred in hepatoma and HeLa cells with siRNA antisense strands designed to enter the silencing pathway, suggesting hybridization with nascent pre-mRNA. Unexpectedly, in HeLa cells the sense strands were also effective, suggesting that an endogenous antisense transcript, detectable in HeLa but not in hepatoma cells, acts as a target. The effect depends on Argonaute-1 and is counterbalanced by factors favoring chromatin opening or transcriptional elongation. The increase in heterochromatin marks (dimethylation at Lys9 and trimethylation at Lys27 of histone H3) at the target site, the need for the heterochromatin-associated protein HP1alpha and the reduction in RNA polymerase II processivity suggest a mechanism involving the kinetic coupling of transcription and alternative splicing.


Assuntos
Processamento Alternativo , Interferência de RNA , RNA Interferente Pequeno , Transcrição Gênica , Animais , Proteínas Argonautas , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Homólogo 5 da Proteína Cromobox , Epigênese Genética , Fatores de Iniciação em Eucariotos , Éxons , Fibronectinas/genética , Fibronectinas/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Masculino , Metilação , Camundongos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
14.
Nat Struct Mol Biol ; 16(6): 670-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19448617

RESUMO

Alternative splicing of pre-mRNA increases the diversity of protein functions. Here we show that about half of all active alternative splicing events in ovarian and breast tissues are changed in tumors, and many seem to be regulated by a single factor; sequence analysis revealed binding sites for the RNA binding protein FOX2 downstream of one-third of the exons skipped in cancer. High-resolution analysis of FOX2 binding sites defined the precise positions relative to alternative exons at which the protein may function as either a silencer or an enhancer. Most of the identified targets were shifted in the same direction by FOX2 depletion in cell lines as they were in breast and ovarian cancer tissues. Notably, we found expression of FOX2 itself is downregulated in ovarian cancer and its splicing is altered in breast cancer samples. These results suggest that the decreased expression of FOX2 in cancer tissues modulates splicing and controls proliferation.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Éxons , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias Ovarianas/metabolismo , Proteínas de Ligação a RNA/química , Análise de Sequência de DNA
15.
Cancer Res ; 68(22): 9525-31, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19010929

RESUMO

Breast cancer is the most common cause of cancer death among women under age 50 years, so it is imperative to identify molecular markers to improve diagnosis and prognosis of this disease. Here, we present a new approach for the identification of breast cancer markers that does not measure gene expression but instead uses the ratio of alternatively spliced mRNAs as its indicator. Using a high-throughput reverse transcription-PCR-based system for splicing annotation, we monitored the alternative splicing profiles of 600 cancer-associated genes in a panel of 21 normal and 26 cancerous breast tissues. We validated 41 alternative splicing events that significantly differed in breast tumors relative to normal breast tissues. Most cancer-specific changes in splicing that disrupt known protein domains support an increase in cell proliferation or survival consistent with a functional role for alternative splicing in cancer. In a blind screen, a classifier based on the 12 best cancer-associated splicing events correctly identified cancer tissues with 96% accuracy. Moreover, a subset of these alternative splicing events could order tissues according to histopathologic grade, and 5 markers were validated in a further blind set of 19 grade 1 and 19 grade 3 tumor samples. These results provide a simple alternative for the classification of normal and cancerous breast tumor tissues and underscore the putative role of alternative splicing in the biology of cancer.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Receptores de Estrogênio/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Mol Cell Biol ; 28(19): 6033-43, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18644864

RESUMO

Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Precursores de RNA/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Regulação para Baixo , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Reação em Cadeia da Polimerase
17.
Nucleic Acids Res ; 36(10): 3320-31, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18440980

RESUMO

Alternative splicing of a single pre-mRNA transcript can produce protein isoforms that promote either cell growth or death. Here we show that Ro-31-8220 (Ro), an apoptotic agent that inhibits protein kinase C and activates the c-Jun N terminal kinase, decreased the proportion of the cell growth-promoting Bcl-xL splice variant. Targeted mutagenesis analyses narrowed down a critical sequence to a 16-nt G-tract element (Gt16). Transferring this element to a heterologous gene conferred Ro response on an otherwise constitutive exon. The Ro effect was reduced by okadaic acid, an inhibitor of protein phosphatases PP1 and PP2A, in a concentration-dependent manner. Search in the human genome followed by RT-PCR identified a group of genes that contain similar exonic G-tract elements and are responsive to Ro. Moreover, the Gt16 element also mediates the regulation of alternative splicing by other cell apoptosis-inducers particularly retinoic acid. Therefore, the G-tract element likely plays a role in the apoptotic agents-induced alternative splicing of a group of genes. The functions of these genes imply that this regulation will have impact on cell growth/death.


Assuntos
Processamento Alternativo , Apoptose , Precursores de RNA/química , RNA Mensageiro/química , Sequências Reguladoras de Ácido Ribonucleico , Proteína bcl-X/genética , Processamento Alternativo/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Guanina/análise , Humanos , Indóis/farmacologia , Ácido Okadáico/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Proteína bcl-X/metabolismo
18.
Cancer Res ; 68(3): 657-63, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18245464

RESUMO

Intense efforts are currently being directed toward profiling gene expression in the hope of developing better cancer markers and identifying potential drug targets. Here, we present a sensitive new approach for the identification of cancer signatures based on direct high-throughput reverse transcription-PCR validation of alternative splicing events. This layered and integrated system for splicing annotation (LISA) fills a gap between high-throughput microarray studies and high-sensitivity individual gene investigations, and was created to monitor the splicing of 600 cancer-associated genes in 25 normal and 21 serous ovarian cancer tissues. Out of >4,700 alternative splicing events screened, the LISA identified 48 events that were significantly associated with serous ovarian tumor tissues. In a further screen directed at 39 ovarian tissues containing cancer pathologies of various origins, our ovarian cancer splicing signature successfully distinguished all normal tissues from cancer. High-volume identification of cancer-associated splice forms by the LISA paves the way for the use of alternative splicing profiling to diagnose subtypes of cancer.


Assuntos
Neoplasias Ovarianas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , RNA Mensageiro/metabolismo
19.
FEBS Lett ; 579(21): 4873-8, 2005 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16111683

RESUMO

An increasing number of peptides translocate the plasma membrane of mammalian cells promising new avenues for drug delivery. However, only a few examples are known to penetrate the fungal cell wall. We compared the capacity of different fluorophore-labelled peptides to translocate into fission yeast and human cells and determined their intracellular distribution. Most of the 20 peptides tested were able to enter human cells, but only one, transportan 10 (TP10), efficiently penetrated fission yeast and was distributed uniformly inside the cells. The results show that the fungal cell wall may reduce, but does not block peptide uptake.


Assuntos
Endocitose/fisiologia , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/metabolismo , Parede Celular/metabolismo , Portadores de Fármacos , Corantes Fluorescentes/metabolismo , Galanina , Células HeLa , Humanos , Schizosaccharomyces/citologia , Venenos de Vespas
20.
Chem Biol ; 10(8): 769-78, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12954336

RESUMO

Thiostrepton and micrococcin inhibit protein synthesis by binding to the L11 binding domain (L11BD) of 23S ribosomal RNA. The two compounds are structurally related, yet they produce different effects on ribosomal RNA in footprinting experiments and on elongation factor-G (EF-G)-dependent GTP hydrolysis. Using NMR and an assay based on A1067 methylation by thiostrepton-resistance methyltransferase, we show that the related thiazoles, nosiheptide and siomycin, also bind to this region. The effect of all four antibiotics on EF-G-dependent GTP hydrolysis and EF-G-GDP-ribosome complex formation was studied. Our NMR and biochemical data demonstrate that thiostrepton, nosiheptide, and siomycin share a common profile, which differs from that of micrococcin. We have generated a three-dimensional (3D) model for the interaction of thiostrepton with L11BD RNA. The model rationalizes the differences between micrococcin and the thiostrepton-like antibiotics interacting with L11BD.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Ribossomos/metabolismo , Tiazóis/metabolismo , Antibacterianos/síntese química , Bacteriocinas , Sequência de Bases , Sítios de Ligação , Guanosina Trifosfato/metabolismo , Hidrólise , Espectroscopia de Ressonância Magnética , Metilação , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Metiltransferases/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , RNA Ribossômico 23S/efeitos dos fármacos , RNA Ribossômico 23S/metabolismo , Tiazóis/química , Tioestreptona/química , Tioestreptona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA