Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 26(4): 351-8, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10382836

RESUMO

Previously we described the high yield production of 64Cu using a target system designed specifically for low energy, biomedical cyclotrons. In this study, the use of this target system for the production of 60Cu and 61Cu is described and the utility of these isotopes in the labeling of biomolecules for tumor and hypoxia imaging is demonstrated. 60Cu and 61Cu were produced by the 60Ni(p,n)60Cu, 61Ni(p,n)61Cu, and 60Ni(d,n)61Cu nuclear reactions. The nickel target (>99% enriched or natural nickel) was plated onto a gold disk as described previously (54-225 microm thickness) and irradiated (14.7 MeV proton beam and 8.1 MeV deuteron beam). The copper isotopes were separated from the nickel via ion exchange chromatography and the radioisotopic purity was assessed by gamma spectroscopy. Yields of up to 865 mCi of 60Cu have been achieved using enriched 60Ni. 61Cu has been produced with a maximum yield of 144 mCi using enriched 61Ni and 72 mCi using enriched 60Ni. Specific activities (using enriched material) ranged from 80 to 300 mCi/microg Cu for 60Cu and from 20 to 81 mCi/microg Cu for 61Cu. Bombardments of natural Ni targets were performed using both protons and deuterons. Yields and radioisotopic impurities were determined and compared with that for enriched materials. 60Cu was used to radiolabel diacetyl-bis(N4-methylthiosemicarbazone), ATSM. 60Cu-ATSM was injected into rats that had an occluded left anterior descending coronary artery. Uptake of 60Cu-ATSM in the hypoxic region of the heart was visualized clearly using autoradiography. In addition, 60Cu-ATSM was injected into dogs and excellent images of the heart and heart walls were obtained using positron emission tomography (PET). 61Cu was labeled to 1,4,8,11-tetraazacyclotetradecane-N,N',N",N"'-tetraacetic acid-octreotide (TETA-octreotide) and the PET images of tumor-bearing rats were obtained up to 2 h postinjection. After decay of the 61Cu, the same rat was injected with 64Cu-TETA-octreotide and the images were compared. The tumor images obtained using 61Cu were found to be superior to those using 64Cu as predicted based on the larger abundance of positrons emitted by 61Cu vs. 64Cu.


Assuntos
Radioisótopos de Cobre , Animais , Custos e Análise de Custo , Cães , Masculino , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Tomografia Computadorizada de Emissão
2.
Med Phys ; 25(10): 1967-74, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9800705

RESUMO

In order for ABNCT (accelerator-based boron neutron capture therapy) to be successful, 10-16 kW or more must be dissipated from a target. Beryllium is well suited as a high-power target material. Beryllium has a thermal conductivity of 200 W/mK at 300 K which is comparable to aluminum, and it has one of the highest strength to weight ratios of any metal even at high temperatures (100 MPa at 600 degrees C). Submerged jet impingement cooling has been investigated as an effective means to remove averaged power densities on the order of 2 x 10(7) W/m2 with local power densities as high as 6 x 10(7) W/m2. Water velocities required to remove these power levels are in excess of 24 m/s with volumetric flow rates of nearly 100 GPM. Tests on a prototype target revealed that the heat transfer coefficient scaled as Re0.6. With jet-Reynolds numbers as high as 5.5 x 10(5) heat transfer coefficients of 2.6 x 10(5) W/m2K were achieved. With this type of cooling configuration 30 kW of power could be effectively removed from a beryllium target placed on the end of an accelerator. A beryllium target utilizing a proton beam of 3.7 MeV and cooled by submerged jet impingement could be used to deliver a dose of 13 RBE cGy/min mA to a tumor at a depth of 4 cm. With a beam power of 30 kW, 1500 cGy could be delivered in 14.2 min.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Berílio , Fenômenos Biofísicos , Biofísica , Desenho de Equipamento , Temperatura Alta , Humanos , Modelos Teóricos , Neoplasias/radioterapia , Aceleradores de Partículas , Água
3.
Nucl Med Biol ; 24(1): 35-43, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9080473

RESUMO

Copper-64 (T 1/2 = 12.7 h) is an intermediate-lived positron-emitting radionuclide that is a useful radiotracer for positron emission tomography (PET) as well as a promising radiotherapy agent for the treatment for cancer. Currently, copper-64 suitable for biomedical studies is produced in the fast neutron flux trap (irradiation of zinc with fast neutrons) at the Missouri University Research Reactor. Access to the fast neutron flux trap is only possible on a weekly basis, making the availability of this tracer very limited. In order to significantly increase the availability of this intermediate-lived radiotracer, we have investigated and developed a method for the efficient production of high specific activity Cu-64 using a small biomedical cyclotron. It has been suggested that it may be possible to produce Cu-64 on a small biomedical cyclotron utilizing the 64Ni(p,n)64Cu nuclear reaction. We have irradiated both natural nickel and enriched (95% and 98%) Ni-64 plated on gold disks. Nickel has been electroplated successfully at thicknesses of approximately 20-300 mm and bombarded with proton currents of 15-45 microA. A special water-cooled target had been designed to facilitate the irradiations on a biomedical cyclotron up to 60 microA. We have shown that it is possible to separate Cu-64 from Ni-64 and other reaction byproducts rapidly and efficiently by using ion exchange chromatography. Production runs using 19-55 mg of 95% enriched Ni-64 have yielded 150-600 mCi of Cu-64 (2.3-5.0 mCi/microAh) with specific activities of 94-310 mci/microgram Cu. The cyclotron produced Cu-64 had been used to radiolabel PTSM [pyruvaldehyde bis-(N4-methylthiosemicarbazone), used to quantify myocardial, cerebral, renal, and tumor blood flow], MAb 1A3 [monoclonal antibody MAb to colon cancer], and octreotide. A recycling technique for the costly Ni-64 target material has been developed. This technique allows the nickel eluted off the column to be recovered and reused in the electroplating of new targets with an overall efficiency of greater than 90%.


Assuntos
Radioisótopos de Cobre , Ciclotrons/instrumentação , Desenho de Equipamento , Tomografia Computadorizada de Emissão
4.
Med Phys ; 19(3): 709-21, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-1324392

RESUMO

Recent interest in the production of epithermal neutrons for use in boron neutron capture therapy (BNCT) has promoted an investigation into the feasibility of generating such neutrons with a high current proton accelerator. Energetic protons (2.5 MeV) on a 7Li target produce a spectrum of neutrons with maximum energy of roughly 800 keV. A number of combinations of D2O moderator, lead reflector, 6Li thermal neutron filtration, and D2O/6Li shielding will result in a useful epithermal flux of 1.6 x 10(8) n/s at the patient position. The neutron beam is capable of delivering 3000 RBE-cGy to a tumor at a depth of 7.5 cm in a total treatment time of 60-93 min (depending on RBE values used and based on a 24-cm diameter x 19-cm length D2O moderator). Treatment of deeper tumors with therapeutic advantage would also be possible. Maximum advantage depths (RBE weighted) of 8.2-9.2 (again depending on RBE values and precise moderator configuration) are obtained in a right-circular cylindrical phantom composed of brain-equivalent material with an advantage ratio of 4.7-6.3. A tandem cascade accelerator (TCA), designed and constructed at Science Research Laboratory (SRL) in Somerville MA, can provide the required proton beam parameters for BNCT of deep-seated tumors. An optimized configuration of materials required to shift the accelerator neutron spectrum down to therapeutically useful energies has been designed using Monte Carlo simulation in the Whitaker College Biomedical Imaging and Computation Laboratory at MIT. Actual construction of the moderator/reflector assembly is currently underway.


Assuntos
Boro , Neoplasias/radioterapia , Nêutrons , Aceleradores de Partículas , Radioterapia/instrumentação , Humanos , Modelos Teóricos , Prótons , Radioterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA