Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 36(1): 48-61.e6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128529

RESUMO

A major hypothesis for the etiology of type 1 diabetes (T1D) postulates initiation by viral infection, leading to double-stranded RNA (dsRNA)-mediated interferon response and inflammation; however, a causal virus has not been identified. Here, we use a mouse model, corroborated with human islet data, to demonstrate that endogenous dsRNA in beta cells can lead to a diabetogenic immune response, thus identifying a virus-independent mechanism for T1D initiation. We found that disruption of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) in beta cells triggers a massive interferon response, islet inflammation, and beta cell failure and destruction, with features bearing striking similarity to early-stage human T1D. Glycolysis via calcium enhances the interferon response, suggesting an actionable vicious cycle of inflammation and increased beta cell workload.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Animais , Humanos , Edição de RNA , RNA de Cadeia Dupla , Interferons/genética , Interferons/metabolismo , Inflamação
2.
Cell Rep ; 42(12): 113457, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995187

RESUMO

While programmed cell death plays important roles during morphogenetic stages of development, post-differentiation organ growth is considered an efficient process whereby cell proliferation increases cell number. Here we demonstrate that early postnatal growth of the pancreas unexpectedly involves massive acinar cell elimination. Measurements of cell proliferation and death in the human pancreas in comparison to the actual increase in cell number predict daily elimination of 0.7% of cells, offsetting 88% of cell formation over the first year of life. Using mouse models, we show that death is associated with mitosis, through a failure of dividing cells to generate two viable daughters. In p53-deficient mice, acinar cell death and proliferation are reduced, while organ size is normal, suggesting that p53-dependent developmental apoptosis triggers compensatory proliferation. We propose that excess cell turnover during growth of the pancreas, and presumably other organs, facilitates robustness to perturbations and supports maintenance of tissue architecture.


Assuntos
Células Acinares , Proteína Supressora de Tumor p53 , Animais , Camundongos , Humanos , Células Acinares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Pâncreas/metabolismo , Diferenciação Celular , Apoptose/fisiologia
3.
Nat Commun ; 14(1): 7542, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985773

RESUMO

Circulating cell-free DNA (cfDNA) fragments are a biological analyte with extensive utility in diagnostic medicine. Understanding the source of cfDNA and mechanisms of release is crucial for designing and interpreting cfDNA-based liquid biopsy assays. Using cell type-specific methylation markers as well as genome-wide methylation analysis, we determine that megakaryocytes, the precursors of anuclear platelets, are major contributors to cfDNA (~26%), while erythroblasts contribute 1-4% of cfDNA in healthy individuals. Surprisingly, we discover that platelets contain genomic DNA fragments originating in megakaryocytes, contrary to the general understanding that platelets lack genomic DNA. Megakaryocyte-derived cfDNA is increased in pathologies involving increased platelet production (Essential Thrombocythemia, Idiopathic Thrombocytopenic Purpura) and decreased upon reduced platelet production due to chemotherapy-induced bone marrow suppression. Similarly, erythroblast cfDNA is reflective of erythrocyte production and is elevated in patients with thalassemia. Megakaryocyte- and erythroblast-specific DNA methylation patterns can thus serve as biomarkers for pathologies involving increased or decreased thrombopoiesis and erythropoiesis, which can aid in determining the etiology of aberrant levels of erythrocytes and platelets.


Assuntos
Ácidos Nucleicos Livres , Megacariócitos , Humanos , Trombopoese , Eritropoese/genética , Ácidos Nucleicos Livres/genética , Plaquetas , Eritroblastos , DNA
4.
Med ; 4(4): 263-281.e4, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060900

RESUMO

BACKGROUND: Vascular endothelial cells (VECs) are an essential component of each tissue, contribute to multiple pathologies, and are targeted by important drugs. Yet, there is a shortage of biomarkers to assess VEC turnover. METHODS: To develop DNA methylation-based liquid biopsies for VECs, we determined the methylome of VECs isolated from freshly dissociated human tissues. FINDINGS: A comparison with a human cell-type methylome atlas yielded thousands of loci that are uniquely unmethylated in VECs. These sites are typically gene enhancers, often residing adjacent to VEC-specific genes. We also identified hundreds of genomic loci that are differentially methylated in organotypic VECs, indicating that VECs feeding specific organs are distinct cell types with a stable epigenetic identity. We established universal and lung-specific VEC markers and evaluated their presence in circulating cell-free DNA (cfDNA). Nearly 2.5% of cfDNA in the plasma of healthy individuals originates from VECs. Sepsis, graft versus host disease, and cardiac catheterization are associated with elevated levels of VEC-derived cfDNA, indicative of vascular damage. Lung-specific VEC cfDNA is selectively elevated in patients with chronic obstructive pulmonary disease (COPD) or lung cancer, revealing tissue-specific vascular turnover. CONCLUSIONS: VEC cfDNA biomarkers inform vascular dynamics in health and disease, potentially contributing to early diagnosis and monitoring of pathologies, and assessment of drug activity. FUNDING: This work was supported by the Beutler Research Program, Helmsley Charitable Trust, JDRF, Grail and the DON Foundation (to Y.D.). Y.D holds the Walter & Greta Stiel Chair in heart studies. B.G., R.S., J.M., D.N., T.K., and Y.D. filed patents on cfDNA analysis.


Assuntos
Ácidos Nucleicos Livres , Epigenoma , Humanos , Endotélio Vascular , Células Endoteliais/metabolismo , Biomarcadores/metabolismo , Biópsia Líquida
5.
Med ; 3(7): 468-480.e5, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716665

RESUMO

BACKGROUND: Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS: We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS: The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS: Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING: This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.


Assuntos
Vacina BNT162 , COVID-19 , Ácidos Nucleicos Livres , SARS-CoV-2 , Adulto , Idoso , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , COVID-19/imunologia , COVID-19/prevenção & controle , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/imunologia , Feminino , Humanos , Imunização Secundária , Masculino , Células B de Memória/imunologia , Células B de Memória/metabolismo , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Adulto Jovem
6.
Elife ; 102021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842142

RESUMO

Blood cell counts often fail to report on immune processes occurring in remote tissues. Here, we use immune cell type-specific methylation patterns in circulating cell-free DNA (cfDNA) for studying human immune cell dynamics. We characterized cfDNA released from specific immune cell types in healthy individuals (N = 242), cross sectionally and longitudinally. Immune cfDNA levels had no individual steady state as opposed to blood cell counts, suggesting that cfDNA concentration reflects adjustment of cell survival to maintain homeostatic cell numbers. We also observed selective elevation of immune-derived cfDNA upon perturbations of immune homeostasis. Following influenza vaccination (N = 92), B-cell-derived cfDNA levels increased prior to elevated B-cell counts and predicted efficacy of antibody production. Patients with eosinophilic esophagitis (N = 21) and B-cell lymphoma (N = 27) showed selective elevation of eosinophil and B-cell cfDNA, respectively, which were undetectable by cell counts in blood. Immune-derived cfDNA provides a novel biomarker for monitoring immune responses to physiological and pathological processes that are not accessible using conventional methods.


Assuntos
Biomarcadores Tumorais/metabolismo , Ácidos Nucleicos Livres/metabolismo , Metilação de DNA , Imunidade , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Diabetologia ; 62(9): 1653-1666, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31187215

RESUMO

AIMS/HYPOTHESIS: Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas. METHODS: To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditional miR-17-92/miR-106b-25 knockout mouse model. We employed metabolic assays in vivo and ex vivo, together with advanced microscopy of pancreatic sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-106b-25, by which they might regulate beta cell proliferation and function. RESULTS: We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-25 in glucose homeostasis and in controlling insulin secretion. We identify protein kinase A as a new relevant molecular pathway downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis. CONCLUSIONS/INTERPRETATION: The study contributes to the understanding of proto-oncogene miRNAs in the normal, untransformed endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs. DATA AVAILABILITY: Sequencing data that support the findings of this study have been deposited in GEO with the accession code GSE126516.


Assuntos
Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , MicroRNAs/metabolismo , Animais , Células Cultivadas , Feminino , Citometria de Fluxo , Secreção de Insulina/genética , Masculino , Espectrometria de Massas , Camundongos , MicroRNAs/genética , Mitose/genética , Mitose/fisiologia , Pâncreas/metabolismo
8.
Diabetes ; 67(11): 2305-2318, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150306

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease where pancreatic ß-cells are destroyed by islet-infiltrating T cells. Although a role for ß-cell defects has been suspected, ß-cell abnormalities are difficult to demonstrate. We show a ß-cell DNA damage response (DDR), presented by activation of the 53BP1 protein and accumulation of p53, in biopsy and autopsy material from patients with recently diagnosed T1D as well as a rat model of human T1D. The ß-cell DDR is more frequent in islets infiltrated by CD45+ immune cells, suggesting a link to islet inflammation. The ß-cell toxin streptozotocin (STZ) elicits DDR in islets, both in vivo and ex vivo, and causes elevation of the proinflammatory molecules IL-1ß and Cxcl10. ß-Cell-specific inactivation of the master DNA repair gene ataxia telangiectasia mutated (ATM) in STZ-treated mice decreases the expression of proinflammatory cytokines in islets and attenuates the development of hyperglycemia. Together, these data suggest that ß-cell DDR is an early event in T1D, possibly contributing to autoimmunity.


Assuntos
Dano ao DNA/imunologia , Diabetes Mellitus Tipo 1/imunologia , Inflamação/imunologia , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Adulto , Animais , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Inflamação/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
9.
Nat Med ; 22(4): 412-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950362

RESUMO

Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Envelhecimento/patologia , Animais , Proliferação de Células/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , PPAR gama/genética , Serina-Treonina Quinases TOR/genética
11.
PLoS One ; 11(2): e0149995, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919188

RESUMO

Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic ß-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in ß-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in ß-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in ß-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation.


Assuntos
Aneuploidia , Crescimento Celular , Transformação Celular Neoplásica/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Animais , Transformação Celular Neoplásica/patologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína S6 Ribossômica/genética
12.
Mol Cancer ; 14: 167, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26370283

RESUMO

BACKGROUND: The SWI/SNF ATP dependent chromatin remodeling complex is a multi-subunit complex, conserved in eukaryotic evolution that facilitates nucleosomal re-positioning relative to the DNA sequence. In recent years the SWI/SNF complex has emerged to play a role in cancer development as various sub-units of the complex are found to be mutated in a variety of tumors. One core-subunit of the complex, which has been well established as a tumor suppressor gene is SMARCB1 (SNF5/INI1/BAF47). Mutation and inactivation of SMARCB1 have been identified as the underlying mechanism leading to Malignant Rhabdoid Tumors (MRT) and Atypical Teratoid/Rhabdoid Tumors (AT/RT), two highly aggressive forms of pediatric neoplasms. METHODS: We present a phosphoproteomic study of Smarcb1 dependent changes in signaling networks. The SILAC (Stable Isotopic Labeling of Amino Acids in Cell Culture) protocol was used to quantify in an unbiased manner any changes in the phosphoproteomic profile of Smarcb1 deficient murine rhabdoid tumor cell lines following Smarcb1 stable re-expression and under different serum conditions. RESULTS: This study illustrates broad changes in the regulation of multiple biological networks including cell cycle progression, chromatin remodeling, cytoskeletal regulation and focal adhesion. Specifically, we identify Smarcb1 dependent changes in phosphorylation and expression of the EGF receptor, demonstrate downstream signaling and show that inhibition of EGFR signaling specifically hinders the proliferation of Smarcb1 deficient cells. CONCLUSIONS: These results support recent findings regarding the effectivity of EGFR inhibitors in hindering the proliferation of human MRT cells and demonstrate that activation of EGFR signaling in Rhabdoid tumors is SMARCB1 dependent.


Assuntos
Neoplasias Encefálicas/genética , Proteínas Cromossômicas não Histona/biossíntese , Receptores ErbB/genética , Neoplasias Renais/genética , Fosfoproteínas/biossíntese , Tumor Rabdoide/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Marcação por Isótopo , Neoplasias Renais/patologia , Camundongos , Fosfoproteínas/genética , Proteômica , Tumor Rabdoide/patologia , Proteína SMARCB1 , Transdução de Sinais
13.
Development ; 138(21): 4743-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965615

RESUMO

How organ size and form are controlled during development is a major question in biology. Blood vessels have been shown to be essential for early development of the liver and pancreas, and are fundamental to normal and pathological tissue growth. Here, we report that, surprisingly, non-nutritional signals from blood vessels act to restrain pancreas growth. Elimination of endothelial cells increases the size of embryonic pancreatic buds. Conversely, VEGF-induced hypervascularization decreases pancreas size. The growth phenotype results from vascular restriction of pancreatic tip cell formation, lateral branching and differentiation of the pancreatic epithelium into endocrine and acinar cells. The effects are seen both in vivo and ex vivo, indicating a perfusion-independent mechanism. Thus, the vasculature controls pancreas morphogenesis and growth by reducing branching and differentiation of primitive epithelial cells.


Assuntos
Vasos Sanguíneos/fisiologia , Diferenciação Celular/fisiologia , Organogênese/fisiologia , Pâncreas/anatomia & histologia , Pâncreas/irrigação sanguínea , Pâncreas/embriologia , Animais , Vasos Sanguíneos/anatomia & histologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Epitélio/embriologia , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Pâncreas/crescimento & desenvolvimento , Fenótipo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA