Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108182

RESUMO

Cystathionine-ß-synthase (CBS) is highly expressed in the liver, and deficiencies in Cbs lead to hyperhomocysteinemia (HHCy) and disturbed production of antioxidants such as hydrogen sulfide. We therefore hypothesized that liver-specific Cbs deficient (LiCKO) mice would be particularly susceptible to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD was induced by a high-fat high-cholesterol (HFC) diet; LiCKO and controls were split into eight groups based on genotype (con, LiCKO), diet (normal diet, HFC), and diet duration (12 weeks, 20 weeks). LiCKO mice displayed intermediate to severe HHCy. Plasma H2O2 was increased by HFC, and further aggravated in LiCKO. LiCKO mice fed an HFC diet had heavier livers, increased lipid peroxidation, elevated ALAT, aggravated hepatic steatosis, and inflammation. LiCKO mice showed decreased L-carnitine in the liver, but this did not result in impaired fatty acid oxidation. Moreover, HFC-fed LiCKO mice demonstrated vascular and renal endothelial dysfunction. Liver and endothelial damage correlated significantly with systemic ROS status. In conclusion, this study demonstrates an important role for CBS in the liver in the development of NAFLD, which is most probably mediated through impaired defense against oxidative stress.


Assuntos
Hiper-Homocisteinemia , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Espécies Reativas de Oxigênio , Dieta Ocidental/efeitos adversos , Peróxido de Hidrogênio , Camundongos Knockout , Fígado , Cistationina beta-Sintase/genética , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Biomed Pharmacother ; 159: 114270, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680812

RESUMO

The RAS-MAPK signaling pathway is one of the most frequently dysregulated pathways in human cancer. Small molecule inhibitors directed against this pathway have clinical activity in patients with various cancer types and can improve patient outcomes. However, the use of these drugs is associated with adverse effects, which can result in dose reduction or treatment interruption. A better molecular understanding of on-target, off-tumor effects may improve toxicity management. In the present study, we aimed to identify early initiating biological changes in the liver upon pharmacological inhibition of the RAS-MAPK signaling pathway. To this end, we tested the effect of MEK inhibitor PD0325901 using mice and human hepatocyte cell lines. Male C57BL/6 mice were treated with either vehicle or PD0325901 for six days, followed by transcriptome analysis of the liver and phenotypic characterization. Pharmacological MEK inhibition altered the expression of 423 genes, of which 78 were upregulated and 345 were downregulated. We identified Shp, a transcriptional repressor, and Cyp7a1, the rate-limiting enzyme in converting cholesterol to bile acids, as the top differentially expressed genes. PD0325901 treatment also affected other genes involved in bile acid regulation, which was associated with changes in the composition of plasma bile acids and composition and total levels of fecal bile acids and elevated predictive biomarkers of early liver toxicity. In conclusion, short-term pharmacological MEK inhibition results in profound changes in bile acid metabolism, which may explain some of the clinical adverse effects of pharmacological inhibition of the RAS-MAPK pathway, including gastrointestinal complications and hepatotoxicity.


Assuntos
Fígado , Receptores Citoplasmáticos e Nucleares , Animais , Humanos , Masculino , Camundongos , Ácidos e Sais Biliares/metabolismo , Colesterol 7-alfa-Hidroxilase/metabolismo , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
3.
Arterioscler Thromb Vasc Biol ; 43(1): e29-e45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353989

RESUMO

BACKGROUND: The copper metabolism MURR1 domains/coiled-coil domain containing 22/coiled-coil domain containing 93 (CCC) complex is required for the transport of low-density lipoprotein receptor (LDLR) and LRP1 (LDLR-related protein 1) from endosomes to the cell surface of hepatocytes. Impaired functioning of hepatocytic CCC causes hypercholesterolemia in mice, dogs, and humans. Retriever, a protein complex consisting of subunits VPS26C, VPS35L, and VPS29, is associated with CCC, but its role in endosomal lipoprotein receptor transport is unclear. We here investigated the contribution of retriever to hepatocytic lipoprotein receptor recycling and plasma lipids regulation. METHODS: Using somatic CRISPR/Cas9 gene editing, we generated liver-specific VPS35L or VPS26C-deficient mice. We determined total and surface levels of LDLR and LRP1 and plasma lipids. In addition, we studied the protein levels and composition of CCC and retriever. RESULTS: Hepatocyte VPS35L deficiency reduced VPS26C levels but had minimal impact on CCC composition. VPS35L deletion decreased hepatocytic surface expression of LDLR and LRP1, accompanied by a 21% increase in plasma cholesterol levels. Hepatic VPS26C ablation affected neither levels of VPS35L and CCC subunits, nor plasma lipid concentrations. However, VPS26C deficiency increased hepatic LDLR protein levels by 2-fold, probably compensating for reduced LRP1 functioning, as we showed in VPS26C-deficient hepatoma cells. Upon PCSK9 (proprotein convertase subtilisin/kexin type 9)-mediated LDLR elimination, VPS26C ablation delayed postprandial triglyceride clearance and increased plasma triglyceride levels by 26%. CONCLUSIONS: Our study suggests that VPS35L is shared between retriever and CCC to facilitate LDLR and LRP1 transport from endosomes to the cell surface. Conversely, retriever subunit VPS26C selectively transports LRP1, but not LDLR, and thereby may control hepatic uptake of postprandial triglyceride-rich lipoprotein remnants.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Pró-Proteína Convertase 9 , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL , Triglicerídeos/metabolismo
4.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735979

RESUMO

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo
5.
Mol Metab ; 60: 101472, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304331

RESUMO

OBJECTIVE: GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e., O-linked glycosylation of secreted proteins with established roles in plasma lipid metabolism. It has recently become clear that loss of GALNT2 in rodents, cattle, nonhuman primates, and humans should be regarded as a novel congenital disorder of glycosylation that affects development and body weight. The role of GALNT2 in metabolic abnormalities other than plasma lipids, including insulin sensitivity and energy homeostasis, is poorly understood. METHODS: GWAS data from the UK Biobank was used to study variation in the GALNT2 locus beyond changes in high-density lipoprotein metabolism. Experimental data were obtained through studies in Galnt2-/- mice and wild-type littermates on both control and high-fat diet. RESULTS: First, we uncovered associations between GALNT2 gene variation, adiposity, and body mass index in humans. In mice, we identify the insulin receptor as a novel substrate of GalNAc-T2 and demonstrate that Galnt2-/- mice exhibit decreased adiposity, alterations in insulin signaling and a shift in energy substrate utilization in the inactive phase. CONCLUSIONS: This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.


Assuntos
Lipoproteínas HDL , Receptor de Insulina , Animais , Bovinos , Glicosilação , Homeostase , Camundongos , N-Acetilgalactosaminiltransferases , Polipeptídeo N-Acetilgalactosaminiltransferase
6.
J Lipid Res ; 63(2): 100167, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007562

RESUMO

Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.


Assuntos
Mobilização de Células-Tronco Hematopoéticas
7.
Hepatology ; 74(5): 2491-2507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34157136

RESUMO

BACKGROUND AND AIMS: Patients with glycogen storage disease type 1a (GSD-1a) primarily present with life-threatening hypoglycemia and display severe liver disease characterized by hepatomegaly. Despite strict dietary management, long-term complications still occur, such as liver tumor development. Variations in residual glucose-6-phosphatase (G6PC1) activity likely contribute to phenotypic heterogeneity in biochemical symptoms and complications between patients. However, lack of insight into the relationship between G6PC1 activity and symptoms/complications and poor understanding of the underlying disease mechanisms pose major challenges to provide optimal health care and quality of life for GSD-1a patients. Currently available GSD-1a animal models are not suitable to systematically investigate the relationship between hepatic G6PC activity and phenotypic heterogeneity or the contribution of gene-gene interactions (GGIs) in the liver. APPROACH AND RESULTS: To meet these needs, we generated and characterized a hepatocyte-specific GSD-1a mouse model using somatic CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing. Hepatic G6pc editing reduced hepatic G6PC activity up to 98% and resulted in failure to thrive, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly, hepatic steatosis (HS), and increased liver tumor incidence. This approach was furthermore successful in simultaneously modulating hepatic G6PC and carbohydrate response element-binding protein, a transcription factor that is activated in GSD-1a and protects against HS under these conditions. Importantly, it also allowed for the modeling of a spectrum of GSD-1a phenotypes in terms of hepatic G6PC activity, fasting hypoglycemia, hypertriglyceridemia, hepatomegaly and HS. CONCLUSIONS: In conclusion, we show that somatic CRISPR/Cas9-mediated gene editing allows for the modeling of a spectrum of hepatocyte-borne GSD-1a disease symptoms in mice and to efficiently study GGIs in the liver. This approach opens perspectives for translational research and will likely contribute to personalized treatments for GSD-1a and other genetic liver diseases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Animais de Doenças , Edição de Genes/métodos , Heterogeneidade Genética , Doença de Depósito de Glicogênio Tipo I/genética , Fenótipo , Animais , Vetores Genéticos , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Mol Metab ; 53: 101265, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34091064

RESUMO

OBJECTIVE: Glycogen storage disease type 1a (GSD Ia) is a rare inherited metabolic disorder caused by mutations in the glucose-6-phosphatase (G6PC1) gene. When untreated, GSD Ia leads to severe fasting-induced hypoglycemia. Although current intensive dietary management aims to prevent hypoglycemia, patients still experience hypoglycemic events. Poor glycemic control in GSD Ia is associated with hypertriglyceridemia, hepatocellular adenoma and carcinoma, and also with an increased bleeding tendency of unknown origin. METHODS: To evaluate the effect of glycemic control on leukocyte levels and coagulation in GSD Ia, we employed hepatocyte-specific G6pc1 deficient (L-G6pc-/-) mice under fed or fasted conditions, to match good or poor glycemic control in GSD Ia, respectively. RESULTS: We found that fasting-induced hypoglycemia in L-G6pc-/- mice decreased blood leukocytes, specifically proinflammatory Ly6Chi monocytes, compared to controls. Refeeding reversed this decrease. The decrease in Ly6Chi monocytes was accompanied by an increase in plasma corticosterone levels and was prevented by the glucocorticoid receptor antagonist mifepristone. Further, fasting-induced hypoglycemia in L-G6pc-/- mice prolonged bleeding time in the tail vein bleeding assay, with reversal by refeeding. This could not be explained by changes in coagulation factors V, VII, or VIII, or von Willebrand factor. While the prothrombin and activated partial thromboplastin time as well as total platelet counts were not affected by fasting-induced hypoglycemia in L-G6pc-/- mice, ADP-induced platelet aggregation was disturbed. CONCLUSIONS: These studies reveal a relationship between fasting-induced hypoglycemia, decreased blood monocytes, and disturbed platelet aggregation in L-G6pc-/- mice. While disturbed platelet aggregation likely accounts for the bleeding phenotype in GSD Ia, elevated plasma corticosterone decreases the levels of proinflammatory monocytes. These studies highlight the necessity of maintaining good glycemic control in GSD Ia.


Assuntos
Jejum , Doença de Depósito de Glicogênio Tipo I/metabolismo , Hepatócitos/metabolismo , Hipoglicemia/metabolismo , Monócitos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Doença de Depósito de Glicogênio Tipo I/patologia , Hepatócitos/patologia , Hipoglicemia/patologia , Gelo , Masculino , Camundongos Knockout , Camundongos Transgênicos , Monócitos/patologia , Agregação Plaquetária
9.
Cell Mol Gastroenterol Hepatol ; 11(1): 309-325.e3, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32698042

RESUMO

BACKGROUND & AIMS: Systemic retinol (vitamin A) homeostasis is controlled by the liver, involving close collaboration between hepatocytes and hepatic stellate cells (HSCs). Genetic variants in retinol metabolism (PNPLA3 and HSD17B13) are associated with non-alcoholic fatty liver disease (NAFLD) and disease progression. Still, little mechanistic details are known about hepatic vitamin A metabolism in NAFLD, which may affect carbohydrate and lipid metabolism, inflammation, oxidative stress and the development of fibrosis and cancer, e.g. all risk factors of NAFLD. METHODS: Here, we analyzed vitamin A metabolism in 2 mouse models of NAFLD; mice fed a high-fat, high-cholesterol (HFC) diet and Leptinob mutant (ob/ob) mice. RESULTS: Hepatic retinol and retinol binding protein 4 (RBP4) levels were significantly reduced in both mouse models of NAFLD. In contrast, hepatic retinyl palmitate levels (the vitamin A storage form) were significantly elevated in these mice. Transcriptome analysis revealed a hyperdynamic state of hepatic vitamin A metabolism, with enhanced retinol storage and metabolism (upregulated Lrat, Dgat1, Pnpla3, Raldh's and RAR/RXR-target genes) in fatty livers, in conjunction with induced hepatic inflammation (upregulated Cd68, Tnfα, Nos2, Il1ß, Il-6) and fibrosis (upregulated Col1a1, Acta2, Tgfß, Timp1). Autofluorescence analyses revealed prominent vitamin A accumulation in hepatocytes rather than HSC in HFC-fed mice. Palmitic acid exposure increased Lrat mRNA levels in primary rat hepatocytes and promoted retinyl palmitate accumulation when co-treated with retinol, which was not detected for similarly-treated primary rat HSCs. CONCLUSION: NAFLD leads to cell type-specific rearrangements in retinol metabolism leading to vitamin A accumulation in hepatocytes. This may promote disease progression and/or affect therapeutic approaches targeting nuclear receptors.


Assuntos
Hepatócitos/patologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Vitamina A/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Humanos , Leptina/genética , Metabolismo dos Lipídeos , Fígado/citologia , Masculino , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfolipases A2 Independentes de Cálcio/genética , Fosfolipases A2 Independentes de Cálcio/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/análise , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Vitamina A/análise
10.
Arterioscler Thromb Vasc Biol ; 40(4): 973-985, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31996024

RESUMO

OBJECTIVE: STAP1, encoding for STAP1 (signal transducing adaptor family member 1), has been reported as a candidate gene associated with familial hypercholesterolemia. Unlike established familial hypercholesterolemia genes, expression of STAP1 is absent in liver but mainly observed in immune cells. In this study, we set out to validate STAP1 as a familial hypercholesterolemia gene. Approach and Results: A whole-body Stap1 knockout mouse model (Stap1-/-) was generated and characterized, without showing changes in plasma lipid levels compared with controls. In follow-up studies, bone marrow from Stap1-/- mice was transplanted to Ldlr-/- mice, which did not show significant changes in plasma lipid levels or atherosclerotic lesions. To functionally assess whether STAP1 expression in B cells can affect hepatic function, HepG2 cells were cocultured with peripheral blood mononuclear cells isolated from heterozygotes carriers of STAP1 variants and controls. The peripheral blood mononuclear cells from STAP1 variant carriers and controls showed similar LDLR mRNA and protein levels. Also, LDL (low-density lipoprotein) uptake by HepG2 cells did not differ upon coculturing with peripheral blood mononuclear cells isolated from either STAP1 variant carriers or controls. In addition, plasma lipid profiles of 39 carriers and 71 family controls showed no differences in plasma LDL cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, and lipoprotein(a) levels. Similarly, B-cell populations did not differ in a group of 10 STAP1 variant carriers and 10 age- and sex-matched controls. Furthermore, recent data from the UK Biobank do not show association between STAP1 rare gene variants and LDL cholesterol. CONCLUSIONS: Our combined studies in mouse models and carriers of STAP1 variants indicate that STAP1 is not a familial hypercholesterolemia gene.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , LDL-Colesterol/sangue , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Animais , Aterosclerose/sangue , Aterosclerose/genética , Linfócitos B/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Lipídeos/sangue , Linfócitos/imunologia , Masculino , Camundongos Knockout , Monócitos/imunologia
11.
Circ Res ; 122(12): 1648-1660, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545368

RESUMO

RATIONALE: COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. OBJECTIVE: The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. METHODS AND RESULTS: Using liver-specific Commd1, Commd6, or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. CONCLUSIONS: Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aterosclerose/prevenção & controle , LDL-Colesterol/sangue , Proteínas do Citoesqueleto/metabolismo , Endossomos/metabolismo , Receptores de LDL/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aterosclerose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Proteínas do Citoesqueleto/genética , Deleção de Genes , Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Fígado/química , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Transporte Proteico , Triglicerídeos/análise , Proteínas Supressoras de Tumor/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1785-1798, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28723419

RESUMO

The NF-κB family of transcription factors is essential for an effective immune response, but also controls cell metabolism, proliferation and apoptosis. Its broad relevance and the high connectivity to diverse signaling pathways require a tight control of NF-κB activity. To investigate the control of NF-κB activity by phosphorylation of the NF-κB p65 subunit, we generated a knock-in mouse model in which serine 467 (the mouse homolog of human p65 serine 468) was replaced with a non-phosphorylatable alanine (S467A). This substitution caused reduced p65 protein synthesis and diminished TNFα-induced expression of a selected group of NF-κB-dependent genes. Intriguingly, high-fat fed S467A mice displayed increased locomotor activity and energy expenditure, which coincided with a reduced body weight gain. Although glucose metabolism or insulin sensitivity was not improved, diet-induced liver inflammation was diminished in S467A mice. Altogether, this study demonstrates that phosphorylation of p65 serine 467 augment NF-κB activity and exacerbates various deleterious effects of overnutrition in mice.


Assuntos
Envelhecimento/genética , Inflamação/metabolismo , Obesidade/genética , Fator de Transcrição RelA/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Substituição de Aminoácidos/genética , Animais , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Inflamação/genética , Inflamação/patologia , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Fosforilação , Serina/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aumento de Peso/genética
13.
Aging (Albany NY) ; 6(4): 281-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24751397

RESUMO

CD36 has been associated with obesity and diabetes in human liver diseases, however, its role in age-associated nonalcoholic fatty liver disease (NAFLD) is unknown. Therefore, liver biopsies were collected from individuals with histologically normal livers (n=30), and from patients diagnosed with simple steatosis (NAS; n=26). Patients were divided into two groups according to age and liver biopsy samples were immunostained for CD36. NAFLD parameters were examined in young (12-week) and middle-aged (52-week) C57BL/6J mice, some fed with chow-diet and some fed with low-fat (LFD; 10% kcal fat) or high-fat diet (HFD; 60% kcal fat) for 12-weeks. CD36 expression was positively associated with age in individuals with normal livers but not in NAS patients. However, CD36 was predominantly located at the plasma membrane of hepatocytes in aged NAS patients as compared to young. In chow-fed mice, aging, despite an increase in hepatic CD36 expression, was not associated with the development of NAFLD. However, middle-aged mice did exhibit the development of HFD-induced NAFLD, mediated by an increase of CD36 on the membrane. Enhanced CD36-mediated hepatic fat uptake may contribute to an accelerated progression of NAFLD in mice and humans. Therapies to prevent the increase in CD36 expression and/or CD36 from anchoring at the membrane may prevent the development of NAFLD.


Assuntos
Antígenos CD36/biossíntese , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Envelhecimento , Animais , Membrana Celular/metabolismo , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
14.
Hepatology ; 57(2): 566-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22941955

RESUMO

UNLABELLED: Ectodomain shedding of tumor necrosis factor receptor 1 (TNFR1) provides negative feedback to the inflammatory loop induced by TNFα. As the significance of this mechanism in obesity-associated pathologies is unclear, we aimed to unravel how much TNFR1 ectodomain shedding controls the development of nonalcoholic fatty liver disease (NAFLD), as well as its role in the development of insulin resistance. We used knockin mice expressing a mutated TNFR1 ectodomain (p55(Δns)), incapable of shedding and dampen the inflammatory response. Our data show that persistent TNFα signaling through this inability of TNFR1 ectodomain shedding contributes to chronic low-grade inflammation, which is confined to the liver. In spite of this, hepatic lipid levels were not affected by the nonshedding mutation in mice fed a chow diet, nor were they worse off following 12 weeks of high-fat diet (HFD) than controls (p55(+/+)) fed an HFD. We detected inflammatory infiltrates, hepatocellular necrosis, and apoptosis in livers of p55(Δns/Δns) mice fed an HFD, suggesting advanced progression of NAFLD toward nonalcoholic steatohepatitis (NASH). Indeed, fibrosis was present in p55(Δns/Δns) mice, but absent in wildtype mice, confirming that the p55(Δns/Δns) mice had a more severe NASH phenotype. Despite low-grade hepatic inflammation, insulin resistance was not observed in p55(Δns/Δns) mice fed a chow diet, and HFD-induced insulin resistance was no worse in p55(Δns/Δns) mice than p55(+/+) mice. CONCLUSION: TNFR1 ectodomain shedding is not an essential feedback mechanism in preventing the development of hepatic steatosis or insulin resistance. It is, however, pivotal in attenuating the progression from "simple steatosis" towards a more serious phenotype with many NASH features. Targeting TNFR1 could therefore be beneficial in attenuating NASH.


Assuntos
Fígado Gorduroso/etiologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Animais , Dieta Hiperlipídica , Feminino , Inflamação/etiologia , Resistência à Insulina/genética , Fígado/patologia , Masculino , Camundongos , Mutação , Hepatopatia Gordurosa não Alcoólica
15.
Nephrol Dial Transplant ; 27(5): 2114-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22015440

RESUMO

BACKGROUND: Interstitial fibrosis and tubular atrophy (IF/TA) is an important cause of renal function loss and ischaemia-reperfusion (I/R) injury is considered to play an important role in its pathophysiology. The aim of the present study was to investigate the role of a disintegrin and metalloproteinase 17 (ADAM17) in human renal allograft disease and in experimental I/R injury of the kidney. METHODS: We studied the expression of ADAM17 messenger RNA (mRNA) in IF/TA and control kidneys by reverse transcription-polymerase chain reaction and in situ hybridization. Moreover, we assessed ADAM17-mediated heparin-binding epidermal growth factor (HB-EGF) shedding in immortalized human cells. Finally, we studied the effect of pharmacological ADAM17 inhibition in a model of renal I/R injury in rats. RESULTS: ADAM17 mRNA was up-regulated in IF/TA when compared to control kidneys. In normal kidneys, ADAM17 mRNA was weakly expressed in proximal tubules, peritubular capillaries, glomerular endothelium and parietal epithelium. In IF/TA, tubular, capillary and glomerular ADAM17 expression was strongly enhanced with de novo expression in the mesangium. In interstitial fibrotic lesions, we observed co-localization of ADAM17 with HB-EGF protein. In vitro, inhibition of ADAM17 with TNF484 resulted in a dose-dependent reduction of HB-EGF shedding in phorbol 12-myrisate 13-acetate-stimulated cells and non-stimulated cells. In vivo, ADAM17 inhibition significantly reduced the number of glomerular and interstitial macrophages at Day 4 of reperfusion. CONCLUSIONS: In conclusion, HB-EGF co-expresses with ADAM17 in renal interstitial fibrosis, suggesting a potential interaction in IF/TA. Targeting ADAM17 to reduce epidermal growth factor receptor phosphorylation could be a promising way of intervention in human renal disease.


Assuntos
Proteínas ADAM/metabolismo , Transplante de Rim , Rim/metabolismo , Rim/patologia , Traumatismo por Reperfusão/metabolismo , Regulação para Cima , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/efeitos dos fármacos , Proteína ADAM17 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Atrofia , Células Cultivadas , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Fibrose , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Ácidos Hidroxâmicos/farmacologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Modelos Animais , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia , Adulto Jovem
16.
PLoS One ; 6(3): e17154, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21448265

RESUMO

BACKGROUND: Obesity promotes inflammation in adipose tissue (AT) and this is implicated in pathophysiological complications such as insulin resistance, type 2 diabetes and cardiovascular disease. Although based on the classical hypothesis, necrotic AT adipocytes (ATA) in obese state activate AT macrophages (ATM) that then lead to a sustained chronic inflammation in AT, the link between human adipocytes and the source of inflammation in AT has not been in-depth and systematically studied. So we decided as a new hypothesis to investigate human primary adipocytes alone to see whether they are able to prime inflammation in AT. METHODS AND RESULTS: Using mRNA expression, human preadipocytes and adipocytes express the cytokines/chemokines and their receptors, MHC II molecule genes and 14 acute phase reactants including C-reactive protein. Using multiplex ELISA revealed the expression of 50 cytokine/chemokine proteins by human adipocytes. Upon lipopolysaccharide stimulation, most of these adipocyte-associated cytokines/chemokines and immune cell modulating receptors were up-regulated and a few down-regulated such as (ICAM-1, VCAM-1, MCP-1, IP-10, IL-6, IL-8, TNF-α and TNF-ß highly up-regulated and IL-2, IL-7, IL-10, IL-13 and VEGF down-regulated. In migration assay, human adipocyte-derived chemokines attracted significantly more CD4+ T cells than controls and the number of migrated CD4+ cells was doubled after treating the adipocytes with LPS. Neutralizing MCP-1 effect produced by adipocytes reduced CD4+ migration by approximately 30%. CONCLUSION: Human adipocytes express many cytokines/chemokines that are biologically functional. They are able to induce inflammation and activate CD4+ cells independent of macrophages. This suggests that the primary event in the sequence leading to chronic inflammation in AT is metabolic dysfunction in adipocytes, followed by production of immunological mediators by these adipocytes, which is then exacerbated by activated ATM, activation and recruitment of immune cells. This study provides novel knowledge about the prime of inflammation in human obese adipose tissue, opening a new avenue of investigations towards obesity-associated type 2 diabetes.


Assuntos
Adipócitos/citologia , Adipócitos/imunologia , Inflamação/patologia , Macrófagos/citologia , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Adipócitos/ultraestrutura , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/genética , Movimento Celular , Células Cultivadas , Quimiocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Receptores de Quimiocinas/metabolismo
17.
Peptides ; 32(5): 938-45, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21334410

RESUMO

GIP receptor knockout mice were shown to be protected from the development of obesity on a high fat diet, suggesting a role of GIP in the development of obesity. In our study we aimed to test the hypothesis if excess of GIP could accelerate development of obesity and to identify GIP gene targets in adipose tissue. Therefore, mice were kept on a chow or a high fat diet and during the last 2 weeks D-Ala(2)-GIP or PBS injections were performed. Afterwards, serum LPL activity and several biochemical parameters (TG, FFA, cholesterol, glucose, insulin, resistin, IL-6, IL-1ß, TNFα, GIP) were measured. Fat tissue was isolated and QPCR was performed for a set of genes involved in energy metabolism and inflammation. A DNA-microarray was used to identify GIP gene targets in adipose tissue of the chow diet group. We found that the D-Ala(2)-GIP injections caused a significant decrease in both body weight and LPL activity compared to controls. Serum biochemical parameters were not affected by D-Ala(2)-GIP, with an exception for resistin and insulin. The set of inflammatory genes were significantly decreased in adipose tissue in the D-Ala(2)-GIP injected animals on a chow diet. A DNA-microarray revealed that APO-genes and CYP-genes were affected by D-Ala(2)-GIP treatment in adipose tissue. These results suggest that the body weight-reducing effect of D-Ala(2)-GIP may be explained by lower LPL activity and insulin serum level. Moreover, the identified GIP candidate gene targets in adipose tissue link GIP action to lipid metabolism exerted by APO and CYP genes.


Assuntos
Peso Corporal/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/farmacologia , Lipase Lipoproteica/sangue , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Gorduras na Dieta/toxicidade , Polipeptídeo Inibidor Gástrico/análogos & derivados , Polipeptídeo Inibidor Gástrico/sangue , Insulina/sangue , Interleucina-6/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Resistina/sangue , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA