Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857395

RESUMO

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Assuntos
Diferenciação Celular , Fagócitos , Humanos , Fagócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo , Engenharia de Proteínas/métodos , Fagocitose
2.
Eur J Haematol ; 109(6): 664-671, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36045599

RESUMO

Paravertebral extramedullary hematopoietic masses (EHMs) account for up to 15% of extramedullary pseudotumors in beta-thalassemia (BT) and are most likely related to compensatory hematopoiesis. In most cases, pseudotumors are incidentally detected, as the majority of patients are asymptomatic. Since June 2020, luspatercept is approved for the treatment of patients with BT who require regular red blood cell transfusions. Data addressing the safety and efficacy of luspatercept in patients with BT-associated EHMs are pending. To date (May 2022), paravertebral EHMs were observed in two asymptomatic patients out of currently 43 adult patients with BT registered at the Adult Hemoglobinopathy Outpatient Unit of the University Hospital Essen, Germany. In one of them, a paravertebral EHM was diagnosed more than 10 years prior to referral. Throughout observation time, treatment with luspatercept was associated with a clinically significant reduction in transfusion burden while allowing to maintain a baseline hemoglobin concentration of ≥10 g/dL aiming to suppress endogenous (ineffective) erythropoiesis associated with BT. Considering the rarity of paravertebral EHMs in BT, luspatercept might potentially represent a novel therapeutic option for these often-serious disease-associated complications. However, appropriate follow-up investigations are recommended to detect (early) treatment failures secondary to an undesired luspatercept-associated erythroid expansion.


Assuntos
Receptores de Activinas Tipo II , Talassemia beta , Adulto , Humanos , Receptores de Activinas Tipo II/efeitos adversos , Receptores de Activinas Tipo II/uso terapêutico , Talassemia beta/complicações , Talassemia beta/diagnóstico , Talassemia beta/tratamento farmacológico , Fragmentos Fc das Imunoglobulinas/efeitos adversos , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/uso terapêutico
3.
Vaccines (Basel) ; 9(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696183

RESUMO

The cellular response to SARS-CoV-2 vaccination and infection in allogeneic hematopoietic stem cell transplant (HSCT) recipients is not yet clear. In the current study, HSCT recipients prior to and post vaccination were tested for SARS-CoV-2-specific humoral and cellular immunity. Antibodies against spike (S) 1 were assessed by Anti-SARS-CoV-2 IgG ELISA (Euroimmun). Cellular immunity was analyzed by an in house interferon-gamma ELISpot and T-SPOT.COVID (Oxford Immunotec), using altogether seven SARS-CoV-2-specific antigens. In 117 HSCT patients vaccinated twice, SARS-CoV-2 IgG antibodies were significantly higher than in HSCT controls pre vaccination (p < 0.0001). After the second vaccination, we observed a median antibody ratio of 4.7 and 68% positive results, whereas 35 healthy controls reached a median ratio of 9.0 and 100% positivity. ELISpot responses in patients were significantly (p < 0.001) reduced to ≤33% of the controls. After the second vaccination, female HSCT patients and female healthy controls showed significantly higher antibody responses than males (6.0 vs. 2.1 and 9.2 vs. 8.2, respectively; p < 0.05). Cellular immunity was diminished in patients irrespective of sex. In conclusion, especially male HSCT recipients showed impaired antibody responses after SARS-CoV-2 vaccination. Changing the vaccine schedule or composition could help increase vaccine responses.

4.
Methods Mol Biol ; 2155: 83-97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32474869

RESUMO

Among the adult stem cells, multipotent mesenchymal stem cells (MSCs) turned out to be a promising option for cell-based therapies for the treatment of various diseases including autoimmune and cardiovascular disorders. MSCs bear a high proliferation and differentiation capability and exert immunomodulatory functions while being still clinically safe. As tissue-resident stem cells, MSCs can be isolated from various tissue including peripheral or umbilical cord blood, placenta, blood, fetal liver, lung, adipose tissue, and blood vessels, although the most commonly used source for MSCs is the bone marrow. However, the proportion of MSCs in primary isolates from adult tissue biopsies is rather low, and therefore MSCs must be intensively expanded in vitro before the MSCs find particular use in therapies that may require extensive and repetitive cell replacement. Therefore, more easily accessible sources of MSCs are needed. Here, we present a detailed protocol to generate tissue-typical MSCs by direct linage conversion using transcription factors defining target MSC identity from murine induced pluripotent stem cells (iPSCs).


Assuntos
Vasos Sanguíneos/citologia , Diferenciação Celular , Técnicas de Transferência de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem da Célula , Células Cultivadas , Fibroblastos , Expressão Gênica , Humanos , Camundongos , Especificidade da Espécie , Transgenes
5.
Cell Mol Life Sci ; 77(17): 3401-3422, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31712992

RESUMO

Cell-based therapies using adult stem cells are promising options for the treatment of a number of diseases including autoimmune and cardiovascular disorders. Among these, vascular wall-derived mesenchymal stem cells (VW-MSCs) might be particularly well suited for the protection and curative treatment of vascular damage because of their tissue-specific action. Here we report a novel method for the direct conversion of human skin fibroblasts towards MSCs using a VW-MSC-specific gene code (HOXB7, HOXC6 and HOXC8) that directs cell fate conversion bypassing pluripotency. This direct programming approach using either a self-inactivating (SIN) lentiviral vector expressing the VW-MSC-specific HOX-code or a tetracycline-controlled Tet-On system for doxycycline-inducible gene expressions of HOXB7, HOXC6 and HOXC8 successfully mediated the generation of VW-typical MSCs with classical MSC characteristics in vitro and in vivo. The induced VW-MSCs (iVW-MSCs) fulfilled all criteria of MSCs as defined by the International Society for Cellular Therapy (ISCT). In terms of multipotency and clonogenicity, which are important specific properties to discriminate MSCs from fibroblasts, iVW-MSCs behaved like primary ex vivo isolated VW-MSCs and shared similar molecular and DNA methylation signatures. With respect to their therapeutic potential, these cells suppressed lymphocyte proliferation in vitro, and protected mice against vascular damage in a mouse model of radiation-induced pneumopathy in vivo, as well as ex vivo cultured human lung tissue. The feasibility to obtain patient-specific VW-MSCs from fibroblasts in large amounts by a direct conversion into induced VW-MSCs could potentially open avenues towards novel, MSC-based therapies.


Assuntos
Fibroblastos/citologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Reprogramação Celular , Metilação de DNA , Modelos Animais de Doenças , Fibroblastos/metabolismo , Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Pulmão/citologia , Pulmão/patologia , Linfócitos/citologia , Linfócitos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Comunicação Parácrina , Pneumonia/patologia , Pneumonia/terapia
6.
Stem Cell Reports ; 10(3): 875-889, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29456178

RESUMO

Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs). Through the use of Runx1(-/-) ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression.


Assuntos
Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio/metabolismo , Endotélio/fisiologia , Hematopoese/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica/métodos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Transcrição Gênica/fisiologia , Regulação para Cima/fisiologia
7.
Transfus Med Hemother ; 44(3): 128-134, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28626363

RESUMO

BACKGROUND: The de novo generation of patient-specific hematopoietic stem and progenitor cells from induced pluripotent stem cells (iPSCs) has become a promising approach for cell replacement therapies in the future. However, efficient differentiation protocols for producing fully functional human hematopoietic stem cells are still missing. In the mouse model, ectopic expression of the human homeotic selector protein HOXB4 has been shown to enforce the development of hematopoietic stem cells (HSCs) in differentiating pluripotent stem cell cultures. However, the mechanism how HOXB4 mediates the formation of HSCs capable of long-term, multilineage repopulation after transplantation is not well understood yet. METHODS: Using a mouse embryonic stem (ES) cell-based differentiation model, we asked whether retrovirally expressed HOXB4 induces the expression of Runx1/AML1, a gene whose expression is absolutely necessary for the formation of definitive, adult HSCs during embryonic development. RESULTS: During ES cell differentiation, basal expression of Runx1 was observed in all cultures, irrespective of ectopic HOXB4 expression. However, only in those cultures ectopically expressing HOXB4, substantial amounts of hematopoietic progenitors were generated which exclusively displayed increased Runx1 expression. CONCLUSIONS: Our results strongly suggest that HOXB4 does not induce basal Runx1 expression but, instead, mediates an increase of Runx1 expression which appears to be a prerequisite for the formation of hematopoietic stem and progenitor cells.

8.
Stem Cell Reports ; 8(4): 919-932, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28366456

RESUMO

The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo.


Assuntos
Aorta/citologia , Reprogramação Celular , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Animais , Aorta/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Fibroblastos/metabolismo , Genes Homeobox , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
J Immunol ; 196(4): 1655-65, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26800876

RESUMO

The hepatocyte NF (HNF) family of transcription factors regulates the complex gene networks involved in lipid, carbohydrate, and protein metabolism. In humans, HNF1A mutations cause maturity onset of diabetes in the young type 3, whereas murine HNF6 participates in fetal liver B lymphopoiesis. In this study, we have identified a crucial role for the prototypical member of the family HNF1A in adult bone marrow B lymphopoiesis. HNF1A(-/-) mice exhibited a clear reduction in total blood and splenic B cells and a further pronounced one in transitional B cells. In HNF1A(-/-) bone marrow, all B cell progenitors-from pre-pro-/early pro-B cells to immature B cells-were dramatically reduced and their proliferation rate suppressed. IL-7 administration in vivo failed to boost B cell development in HNF1A(-/-) mice, whereas IL-7 stimulation of HNF1A(-/-) B cell progenitors in vitro revealed a marked impairment in STAT5 phosphorylation. The B cell differentiation potential of HNF1A(-/-) common lymphoid progenitors was severely impaired in vitro, and the expression of the B lymphopoiesis-promoting transcription factors E2A, EBF1, Pax5, and Bach2 was reduced in B cell progenitors in vivo. HNF1A(-/-) bone marrow chimera featured a dramatic defect in B lymphopoiesis recapitulating that of global HNF1A deficiency. The HNF1A(-/-) lymphopoiesis defect was confined to B cells as T lymphopoiesis was unaffected, and bone marrow common lymphoid progenitors and hematopoietic stem cells were even increased. Our data demonstrate that HNF1A is an important cell-intrinsic transcription factor in adult B lymphopoiesis and suggest the IL-7R/STAT5 module to be causally involved in mediating its function.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Fator 1-alfa Nuclear de Hepatócito/imunologia , Linfopoese/imunologia , Animais , Linfócitos B/citologia , Separação Celular , Citometria de Fluxo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição
10.
Methods Mol Biol ; 1029: 129-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23756947

RESUMO

Differentiation of pluripotent embryonic stem (ES) cells can recapitulate many aspects of hematopoiesis, in vitro, and can even generate cells capable of long-term multilineage repopulation after transplantation into recipient mice, when the homeodomain transcription factor HOXB4 is ectopically expressed. Thus, the ES-cell differentiation system is of great value for a detailed understanding of the process of blood formation. Furthermore, it is also promising for future application in hematopoietic cell and gene therapy. Since the arrival of techniques which allow the reprogramming of somatic cells back to an ES cell-like state, the generation of hematopoietic stem cells from patient-specific so-called induced pluripotent stem cells shows great promise for future therapeutic applications. In this chapter, we describe how to cultivate a certain feeder cell-independent mouse embryonic stem cell line, to manipulate these cells by retroviral gene transfer to ectopically express HOXB4, to differentiate these ES cells via embryoid body formation, and to selectively expand the arising, HOXB4-expressing hematopoietic stem and progenitor cells.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Retroviridae/metabolismo , Transdução Genética
11.
Stem Cells Transl Med ; 1(8): 581-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23197864

RESUMO

Induced pluripotent stem cells (iPSCs) may become a promising source for the generation of patient-specific hematopoietic stem cells (HSCs) in vitro. A crucial prerequisite will be the availability of reliable protocols for the directed and efficient differentiation toward HSCs. So far, the most robust strategy for generating HSCs from pluripotent cells in vitro has been established in the mouse model involving ectopic expression of the human transcription factor HOXB4. However, most differentiation protocols include coculture on a xenogenic stroma cell line and the use of animal serum. Involvement of any of both would pose a major barrier to the translation of those protocols to human autologous iPSCs intended for clinical use. Therefore, we asked whether long-term repopulating HSCs can, in principle, be generated from embryonic stem cells without stroma cells or serum. Here, we showed that long-term multilineage engraftment could be accomplished in immunocompetent mice when HSCs were generated in serum-free medium without stroma cell support and when hypoxic conditions were used. Under those conditions, HOXB4(+) embryonic stem cell-derived hematopoietic stem and progenitor cells were immunophenotypically similar to definitive bone marrow resident E-SLAM(+) (CD150(+)CD48(-)CD45(+)CD201(+)) HSCs. Thus, our findings may ease the development of definitive, adult-type HSCs from pluripotent stem cells, entirely in vitro.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Hipóxia/metabolismo , Células-Tronco Pluripotentes/citologia , Células Estromais/citologia , Animais , Medula Óssea/metabolismo , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura Livres de Soro/farmacologia , Citocinas/farmacologia , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos SCID , Células-Tronco Pluripotentes/metabolismo , Regeneração/fisiologia , Células Estromais/metabolismo
12.
Mol Ther ; 19(4): 782-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21285961

RESUMO

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell-derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events.


Assuntos
Reprogramação Celular/fisiologia , Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Lentivirus/genética , Animais , Células Cultivadas , Reprogramação Celular/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Teratoma/metabolismo , Teratoma/patologia
14.
Blood ; 111(6): 2953-61, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18056836

RESUMO

The ability of embryonic stem (ES) cells to form cells and tissues from all 3 germ layers can be exploited to generate cells that can be used to treat diseases. In particular, successful generation of hematopoietic cells from ES cells could provide safer and less immunogenic cells than bone marrow cells, which require severe host preconditioning when transplanted across major histocompatibility complex barriers. Here, we exploited the self-renewal properties of ectopically expressed HOXB4, a homeobox transcription factor, to generate hematopoietic progenitor cells (HPCs) that successfully induce high-level mixed chimerism and long-term engraftment in recipient mice. The HPCs partially restored splenic architecture in Rag2(-/-)gamma(c)(-/-)-immunodeficient mice. In addition, HPC-derived newly generated T cells were able to mount a peptide-specific response to lymphocytic choriomeningitis virus and specifically secreted interleukin-2 and interferon-gamma upon CD3 stimulation. In addition, HPC-derived antigen presenting cells in chimeric mice efficiently presented viral antigen to wild-type T cells. These results demonstrate for the first time that leukocytes derived from ES cells ectopically expressing HOXB4 are immunologically functional, opening up new opportunities for the use of ES cell-derived HPCs in the treatment of hematologic and immunologic diseases.


Assuntos
Hematopoese/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Animais , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linhagem Celular , Quimerismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais/imunologia , Fatores de Transcrição/genética
15.
Proc Natl Acad Sci U S A ; 104(43): 16952-7, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17940039

RESUMO

Homeodomain-containing transcription factors are important regulators of stem cell behavior. HOXB4 mediates expansion of adult and embryo-derived hematopoietic stem cells (HSCs) when expressed ectopically. To define the underlying molecular mechanisms, we performed gene expression profiling in combination with subsequent functional analysis with enriched adult HSCs and embryonic derivatives expressing inducible HOXB4. Thereby, we identified a set of overlapping genes that likely represent "universal" targets of HOXB4. A substantial number of loci are involved in signaling pathways important for controlling self-renewal, maintenance, and differentiation of stem cells. Functional assays performed on selected pathways confirmed the biological coherence of the array results. HOXB4 activity protected adult HSCs from the detrimental effects mediated by the proinflammatory cytokine TNF-alpha. This protection likely contributes to the competitive repopulation advantage of HOXB4-expressing HSCs observed in vivo. The concept of TNF-alpha inhibition may also prove beneficial for patients undergoing bone marrow transplantation. Furthermore, we demonstrate that HOXB4 activity and FGF signaling are intertwined. HOXB4-mediated expansion of adult and ES cell-derived HSCs was enhanced by specific and complete inhibition of FGF receptors. In contrast, the expanding activity of HOXB4 on hematopoietic progenitors in day 4-6 embryoid bodies was blunted in the presence of basic FGF (FGF2), indicating a dominant negative effect of FGF signaling on the earliest hematopoietic cells. In summary, our results strongly suggest that HOXB4 modulates the response of HSCs to multiple extrinsic signals in a concerted manner, thereby shifting the balance toward stem cell self-renewal.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/farmacologia
16.
Cell Cycle ; 5(1): 14-22, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16357528

RESUMO

Ectopic expression of the homeodomain transcription factor HOXB4 expands hematopoietic stem and progenitor cells in vivo and in vitro, making HOXB4 a highly interesting candidate for therapeutic stem cell expansion. However, when expressed at high levels, HOXB4 concomitantly perturbs differentiation and thus likely predisposes the manipulated cells for leukemogenesis. We therefore asked whether the expression level of HOXB4 may be a critical parameter that influences the growth and transformation properties of transduced cells. Using a set of retroviral vectors which covered a 40-fold range of expression levels, we studied the consequences of HOXB4 expression at different levels in the well established Rat-1 fibroblast cell system. HOXB4 transformed Rat-1 fibroblasts beyond a certain threshold level of expression. Further escalation of HOXB4 expression, however, did not enhance transformation. Instead, HOXB4 mediated a dose dependent anti-proliferative effect on Rat-1 and NIH3T3 fibroblasts. This effect was aggravated under reduced serum concentrations and was, at least partially, due to an enhanced sensitivity of HOXB4 overexpressing cells to induction of apoptosis. Based on these results we propose that HOXB4 affects cell growth in a dose-dependent manner by sensitizing cells towards extrinsic signals.


Assuntos
Proteínas de Homeodomínio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Vetores Genéticos/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Fatores de Transcrição/genética
17.
Proc Natl Acad Sci U S A ; 102(34): 12101-6, 2005 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16093308

RESUMO

Genetic manipulation of hematopoietic stem and progenitor cells is an important tool for experimental and clinical applied hematology. However, techniques that allow for gene targeting, subsequent in vitro selection, and expansion of genetically defined clones are available only for ES cells. Such molecularly defined and, hence, "safe" clones would be highly desirable for somatic gene therapy. Here, we demonstrate that in vitro differentiated ES cells completely recapitulate the growth and differentiation properties of adult bone marrow cells, in vitro and in vivo, when ectopically expressing HOXB4. Myeloid development was enforced and (T) lymphoid development suppressed over a wide range of expression levels, whereas only high expression levels of the transcription factor were detrimental for erythroid development. This indicates a close association between the amounts of ectopic HOXB4 present within a progenitor cell and and the decision to self renew or differentiate. Because HOXB4 mediates similar fates of ES-derived and bone marrow hematopoietic stem cells, the primitive embryonic cells can be considered a promising alternative for investigating hematopoietic reconstitution, in vivo, based on well defined clones. Provided that HOXB4 levels are kept within a certain therapeutic window, ES cells also carry the potential of efficient and safe somatic gene therapy.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células da Medula Óssea/metabolismo , Citometria de Fluxo , Vetores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Retroviridae
18.
Ann N Y Acad Sci ; 1044: 6-15, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15958692

RESUMO

The homeodomain transcription factor HOXB4 is one of the most attractive tools to expand hematopoietic stem cells in vitro and in vivo and to promote the formation of hematopoietic cells from in vitro differentiated embryonic stem cells. However, the expression levels compatible with the favorable effect of enhanced self-renewal without perturbing differentiation, in vivo, remain to be determined. In this paper, we discuss the necessity to define the "therapeutic width" of HOXB4 expression, based on observations from our lab and others that demonstrate that ectopic HOXB4 expression leads to a concentration-dependent perturbation of lineage differentiation of mouse and human hematopoietic cells. In summary, the combined results argue in favor of the existence of certain threshold levels for HOXB4 activity that control the differentiation and self-renewal behavior of hematopoietic stem and progenitor cells. Indeed, existing evidence suggests that dosage effects of ectopically expressed transcription factors may be more the rule than an exception.


Assuntos
Diferenciação Celular/fisiologia , Genes Homeobox , Hematopoese , Células-Tronco Hematopoéticas , Proteínas de Homeodomínio/genética , Animais , Linhagem da Célula , Humanos , Técnicas In Vitro , Modelos Biológicos
19.
Blood ; 101(5): 1759-68, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12406897

RESUMO

Ectopic retroviral expression of homeobox B4 (HOXB4) causes an accelerated and enhanced regeneration of murine hematopoietic stem cells (HSCs) and is not known to compromise any program of lineage differentiation. However, HOXB4 expression levels for expansion of human stem cells have still to be established. To test the proposed hypothesis that HOXB4 could become a prime tool for in vivo expansion of genetically modified human HSCs, we retrovirally overexpressed HOXB4 in purified cord blood (CB) CD34+ cells together with green fluorescent protein (GFP) as a reporter protein, and evaluated the impact of ectopic HOXB4 expression on proliferation and differentiation in vitro and in vivo. When injected separately into nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice or in competition with control vector-transduced cells, HOXB4-overexpressing cord blood CD34+ cells had a selective growth advantage in vivo, which resulted in a marked enhancement of the primitive CD34+ subpopulation (P =.01). However, high HOXB4 expression substantially impaired the myeloerythroid differentiation program, and this was reflected in a severe reduction of erythroid and myeloid progenitors in vitro (P <.03) and in vivo (P =.01). Furthermore, HOXB4 overexpression also significantly reduced B-cell output (P <.01). These results show for the first time unwanted side effects of ectopic HOXB4 expression and therefore underscore the need to carefully determine the therapeutic window of HOXB4 expression levels before initializing clinical trials.


Assuntos
Hematopoese/fisiologia , Proteínas de Homeodomínio/fisiologia , Linfócitos/citologia , Células Mieloides/citologia , Fatores de Transcrição/fisiologia , Animais , Retrovirus Endógenos/genética , Sangue Fetal/citologia , Regulação da Expressão Gênica , Vetores Genéticos/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/toxicidade , Humanos , Interleucina-3/farmacologia , Interleucina-6/farmacologia , Células K562/citologia , Vírus da Leucemia Murina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Recombinantes de Fusão/toxicidade , Proteínas Recombinantes/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/toxicidade , Transdução Genética
20.
Nucleic Acids Res ; 30(12): e59, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12060697

RESUMO

Site-specific recombination in genetically modified cells can be achieved by the activity of Cre recombinase from bacteriophage P1. Commonly an expression vector encoding Cre is introduced into cells; however, this can lead to undesired side-effects. Therefore, we tested whether cell-permeable Cre fusion proteins can be directly used for lox-specific recombination in a cell line tailored to shift from red to green fluorescence after loxP-specific recombination. Comparison of purified recombinant Cre proteins with and without a heterologous 'protein transduction domain' surprisingly showed that the unmodified Cre recombinase already possesses an intrinsic ability to cross the membrane border. Addition of purified recombinant Cre enyzme to primary bone marrow cells isolated from transgenic C/EBPalpha(fl/fl) mice also led to excision of the 'floxed' C/EBPalpha gene, thus demonstrating its potential for in vivo applications. We conclude that Cre enyzme itself or its intrinsic membrane-permeating moiety are attractive tools for direct manipulation of mammalian cells.


Assuntos
Marcação de Genes/métodos , Integrases/metabolismo , Recombinação Genética , Proteínas Virais/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Membrana Celular/enzimologia , Células Cultivadas , Genes Reporter , Integrases/genética , Camundongos , Camundongos Transgênicos , Transporte Proteico , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA