Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Curr Opin Pharmacol ; 71: 102392, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37453312

RESUMO

Adenosine 3',5'-cyclic monophosphate (cAMP) acts as a second messenger that is involved in the regulation of a plethora of processes. The activation of cAMP signaling in defined compartments is critical for cells to respond to an extracellular stimulus in a specific manner. Rapid advances in the field of human induced pluripotent stem cells (iPSCs) reflect their great potential for cardiovascular disease modeling, drug screening, regenerative and precision medicine. This review discusses cAMP signaling in iPSC-derived cardiovascular disease models, and the prospects of using such systems to elucidate disease mechanisms, drug actions and to identify novel drug targets for the treatment of cardiovascular diseases with unmet medical need, such as hypertension and heart failure.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Diferenciação Celular
3.
Hypertension ; 80(6): 1171-1179, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37035914

RESUMO

Hypertension with brachydactyly (HTNB) represents an autosomal dominant form of hypertension. It is a rare syndrome, in which the blood pressure can rise by more than 50 mmHg. If untreated, the patients die of stroke by the age of 50 years. In HTNB, vascular smooth muscle cell proliferation is increased, vasodilation compromised, and the kidney not affected. Surprisingly, after decades of hypertension, HTNB is not associated with hypertension-induced cardiac damage. HTNB is caused by gain-of-function mutations in the PDE3A (phosphodiesterase 3A) gene. The mutant enzymes are hyperactive. PDE3A (phosphodiesterase 3A) hydrolyzes and thereby terminates cyclic adenosine monophosphate signaling in defined cellular compartments. The cardioprotective effect involves local changes of cyclic adenosine monophosphate signaling and inhibition of Ca2+ reuptake into the sarcoplasmic reticulum of cardiac myocytes. This review introduces HTNB and discusses how insight into the molecular mechanisms underlying HTNB could contribute to a better understanding of blood pressure control and lead to PDE3A-directed strategies for the treatment of essential hypertension and the prevention of hypertension-induced cardiac damage. A focus will be on cAMP (cyclic adenosine monophosphate) signaling compartments.


Assuntos
Hipertensão , Humanos , Pessoa de Meia-Idade , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Hipertensão/genética , Mutação , Miócitos Cardíacos , Monofosfato de Adenosina
4.
Circ Res ; 132(7): 828-848, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36883446

RESUMO

BACKGROUND: Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac ß-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. METHODS: Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with ß-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. RESULTS: We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. CONCLUSIONS: We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.


Assuntos
AMP Cíclico , Miócitos Cardíacos , Humanos , Proteômica , Diester Fosfórico Hidrolases , Hipertrofia , Adrenérgicos
5.
Methods Mol Biol ; 2483: 117-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286673

RESUMO

A-kinase anchoring proteins (AKAPs) are a family of multivalent scaffolding proteins. They engage in direct protein-protein interactions with protein kinases, kinase substrates and further signaling molecules. Each AKAP interacts with a specific set of protein interaction partners and such sets can vary between different cellular compartments and cells. Thus, AKAPs can coordinate signal transduction processes spatially and temporally in defined cellular environments. AKAP-dependent protein-protein interactions are involved in a plethora of physiological processes, including processes in the cardiovascular, nervous, and immune system. Dysregulation of AKAPs and their interactions is associated with or causes widespread diseases, for example, cardiac diseases such as heart failure. However, there are profound shortcomings in understanding functions of specific AKAP-dependent protein-protein interactions. In part, this is due to the lack of agents for specifically targeting defined protein-protein interactions. Peptidic and non-peptidic inhibitors are invaluable molecular tools for elucidating the functions of AKAP-dependent protein-protein interactions. In addition, such interaction disruptors may pave the way to new concepts for the treatment of diseases where AKAP-dependent protein-protein interactions constitute potential drug targets.Here we describe screening approaches for the identification of small molecule disruptors of AKAP-dependent protein-protein interactions. Examples include interactions of AKAP18 and protein kinase A (PKA) and of AKAP-Lbc and RhoA. We discuss a homogenous time-resolved fluorescence (HTRF) and an AlphaScreen® assay for small molecule library screening and human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) as a cell system for the characterization of identified hits.


Assuntos
Proteínas de Ancoragem à Quinase A , Células-Tronco Pluripotentes Induzidas , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ligação Proteica , Transdução de Sinais
6.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054947

RESUMO

The cAMP-dependent aquaporin-2 (AQP2) redistribution from intracellular vesicles into the plasma membrane of renal collecting duct principal cells induces water reabsorption and fine-tunes body water homeostasis. However, the mechanisms controlling the localization of AQP2 are not understood in detail. Using immortalized mouse medullary collecting duct (MCD4) and primary rat inner medullary collecting duct (IMCD) cells as model systems, we here discovered a key regulatory role of Aurora kinase A (AURKA) in the control of AQP2. The AURKA-selective inhibitor Aurora-A inhibitor I and novel derivatives as well as a structurally different inhibitor, Alisertib, prevented the cAMP-induced redistribution of AQP2. Aurora-A inhibitor I led to a depolymerization of actin stress fibers, which serve as tracks for the translocation of AQP2-bearing vesicles to the plasma membrane. The phosphorylation of cofilin-1 (CFL1) inactivates the actin-depolymerizing function of CFL1. Aurora-A inhibitor I decreased the CFL1 phosphorylation, accounting for the removal of the actin stress fibers and the inhibition of the redistribution of AQP2. Surprisingly, Alisertib caused an increase in actin stress fibers and did not affect CFL1 phosphorylation, indicating that AURKA exerts its control over AQP2 through different mechanisms. An involvement of AURKA and CFL1 in the control of the localization of AQP2 was hitherto unknown.


Assuntos
Aquaporina 2/metabolismo , Aurora Quinase A/metabolismo , Túbulos Renais Coletores/metabolismo , Actinas/metabolismo , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Inativação Gênica , Imuno-Histoquímica , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Estrutura Molecular , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos
7.
Circ Res ; 130(1): 27-44, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34814703

RESUMO

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+-ATPase 2 (SERCA2) mediates Ca2+ reuptake into SR and thereby promotes cardiomyocyte relaxation, whereas the ryanodine receptor (RYR) mediates Ca2+ release from SR and triggers contraction. Ca2+/CaMKII (CaM [calmodulin]-dependent protein kinase II) regulates activities of SERCA2 through phosphorylation of PLN (phospholamban) and RYR through direct phosphorylation. However, the mechanisms for CaMKIIδ anchoring to SERCA2-PLN and RYR and its regulation by local Ca2+ signals remain elusive. The objective of this study was to investigate CaMKIIδ anchoring and regulation at SERCA2-PLN and RYR. METHODS: A role for AKAP18δ (A-kinase anchoring protein 18δ) in CaMKIIδ anchoring and regulation was analyzed by bioinformatics, peptide arrays, cell-permeant peptide technology, immunoprecipitations, pull downs, transfections, immunoblotting, proximity ligation, FRET-based CaMKII activity and ELISA-based assays, whole cell and SR vesicle fluorescence imaging, high-resolution microscopy, adenovirus transduction, adenoassociated virus injection, structural modeling, surface plasmon resonance, and alpha screen technology. RESULTS: Our results show that AKAP18δ anchors and directly regulates CaMKIIδ activity at SERCA2-PLN and RYR, via 2 distinct AKAP18δ regions. An N-terminal region (AKAP18δ-N) inhibited CaMKIIδ through binding of a region homologous to the natural CaMKII inhibitor peptide and the Thr17-PLN region. AKAP18δ-N also bound CaM, introducing a second level of control. Conversely, AKAP18δ-C, which shares homology to neuronal CaMKIIα activator peptide (N2B-s), activated CaMKIIδ by lowering the apparent Ca2+ threshold for kinase activation and inducing CaM trapping. While AKAP18δ-C facilitated faster Ca2+ reuptake by SERCA2 and Ca2+ release through RYR, AKAP18δ-N had opposite effects. We propose a model where the 2 unique AKAP18δ regions fine-tune Ca2+-frequency-dependent activation of CaMKIIδ at SERCA2-PLN and RYR. CONCLUSIONS: AKAP18δ anchors and functionally regulates CaMKII activity at PLN-SERCA2 and RYR, indicating a crucial role of AKAP18δ in regulation of the heartbeat. To our knowledge, this is the first protein shown to enhance CaMKII activity in heart and also the first AKAP (A-kinase anchoring protein) reported to anchor a CaMKII isoform, defining AKAP18δ also as a CaM-KAP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Sítios de Ligação , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Células Cultivadas , Células HEK293 , Humanos , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Ratos Wistar
8.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001616

RESUMO

L-type voltage-gated CaV1.2 channels crucially regulate cardiac muscle contraction. Activation of ß-adrenergic receptors (ß-AR) augments contraction via protein kinase A (PKA)-induced increase of calcium influx through CaV1.2 channels. To date, the full ß-AR cascade has never been heterologously reconstituted. A recent study identified Rad, a CaV1.2 inhibitory protein, as essential for PKA regulation of CaV1.2. We corroborated this finding and reconstituted the complete pathway with agonist activation of ß1-AR or ß2-AR in Xenopus oocytes. We found, and distinguished between, two distinct pathways of PKA modulation of CaV1.2: Rad dependent (∼80% of total) and Rad independent. The reconstituted system reproduces the known features of ß-AR regulation in cardiomyocytes and reveals several aspects: the differential regulation of posttranslationally modified CaV1.2 variants and the distinct features of ß1-AR versus ß2-AR activity. This system allows for the addressing of central unresolved issues in the ß-AR-CaV1.2 cascade and will facilitate the development of therapies for catecholamine-induced cardiac pathologies.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Proteínas ras/metabolismo , Animais , Canais de Cálcio Tipo L/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Camundongos , Mutação , Miócitos Cardíacos/citologia , Oócitos/citologia , Oócitos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/genética , RNA/metabolismo , Coelhos , Receptores Adrenérgicos beta/genética , Xenopus laevis , Proteínas ras/genética
9.
Acta Physiol (Oxf) ; 232(1): e13641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33660401

RESUMO

The molecular mechanisms underlying chronic kidney disease (CKD) are poorly understood and treatment options are limited, a situation underpinning the need for elucidating the causative molecular mechanisms and for identifying innovative treatment options. It is emerging that cyclic 3',5'-adenosine monophosphate (cAMP) signalling occurs in defined cellular compartments within nanometre dimensions in processes whose dysregulation is associated with CKD. cAMP compartmentalization is tightly controlled by a specific set of proteins, including A-kinase anchoring proteins (AKAPs) and phosphodiesterases (PDEs). AKAPs such as AKAP18, AKAP220, AKAP-Lbc and STUB1, and PDE4 coordinate arginine-vasopressin (AVP)-induced water reabsorption by collecting duct principal cells. However, hyperactivation of the AVP system is associated with kidney damage and CKD. Podocyte injury involves aberrant AKAP signalling. cAMP signalling in immune cells can be local and slow the progression of inflammatory processes typical for CKD. A major risk factor of CKD is hypertension. cAMP directs the release of the blood pressure regulator, renin, from juxtaglomerular cells, and plays a role in Na+ reabsorption through ENaC, NKCC2 and NCC in the kidney. Mutations in the cAMP hydrolysing PDE3A that cause lowering of cAMP lead to hypertension. Another major risk factor of CKD is diabetes mellitus. AKAP18 and AKAP150 and several PDEs are involved in insulin release. Despite the increasing amount of data, an understanding of functions of compartmentalized cAMP signalling with relevance for CKD is fragmentary. Uncovering functions will improve the understanding of physiological processes and identification of disease-relevant aberrations may guide towards new therapeutic concepts for the treatment of CKD.


Assuntos
Aquaporina 2 , Insuficiência Renal Crônica , Monofosfato de Adenosina , Aquaporina 2/metabolismo , AMP Cíclico , Humanos , Transdução de Sinais , Ubiquitina-Proteína Ligases
10.
Biochem Soc Trans ; 48(1): 39-49, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32065210

RESUMO

Cardiac excitation-contraction coupling is initiated with the influx of Ca2+ ions across the plasma membrane through voltage-gated L-type calcium channels. This process is tightly regulated by modulation of the channel open probability and channel localization. Protein kinase A (PKA) is found in close association with the channel and is one of the main regulators of its function. Whether this kinase is modulating the channel open probability by phosphorylation of key residues or via alternative mechanisms is unclear. This review summarizes recent findings regarding the PKA-mediated channel modulation and will highlight recently discovered regulatory mechanisms that are independent of PKA activity and involve protein-protein interactions and channel localization.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miocárdio/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Sítios de Ligação , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Humanos , Fosforilação , Domínios e Motivos de Interação entre Proteínas
12.
Elife ; 82019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31580256

RESUMO

The cAMP-dependent protein kinase A (PKA) regulates various cellular functions in health and disease. In endothelial cells PKA activity promotes vessel maturation and limits tip cell formation. Here, we used a chemical genetic screen to identify endothelial-specific direct substrates of PKA in human umbilical vein endothelial cells (HUVEC) that may mediate these effects. Amongst several candidates, we identified ATG16L1, a regulator of autophagy, as novel target of PKA. Biochemical validation, mass spectrometry and peptide spot arrays revealed that PKA phosphorylates ATG16L1α at Ser268 and ATG16L1ß at Ser269, driving phosphorylation-dependent degradation of ATG16L1 protein. Reducing PKA activity increased ATG16L1 protein levels and endothelial autophagy. Mouse in vivo genetics and pharmacological experiments demonstrated that autophagy inhibition partially rescues vascular hypersprouting caused by PKA deficiency. Together these results indicate that endothelial PKA activity mediates a critical switch from active sprouting to quiescence in part through phosphorylation of ATG16L1, which in turn reduces endothelial autophagy.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Neovascularização Fisiológica , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Humanos , Camundongos , Fosforilação
13.
Naunyn Schmiedebergs Arch Pharmacol ; 392(9): 1049-1064, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31300862

RESUMO

The tight spatial and temporal organisation of cyclic adenosine monophosphate (cAMP) signalling plays a key role in arginine-vasopressin (AVP)-mediated water reabsorption in renal collecting duct principal cells and in a plethora of other processes such as in the control of cardiac myocyte contractility. This review critically discusses in vitro- and cell-based screening strategies for the identification of small molecules that interfere with AVP/cAMP signalling in renal principal cells; it features phenotypic screening and approaches for targeting protein-protein interactions of A-kinase anchoring proteins (AKAPs), which organise local cAMP signalling hubs. The discovery of novel chemical entities for the modulation of local cAMP will not only provide tools for elucidating molecular mechanisms underlying cAMP signalling. Novel chemical entities can also serve as starting points for the development of novel drugs for the treatment of human diseases. Examples illustrate how screening for small molecules can pave the way to novel approaches for the treatment of certain forms of diabetes insipidus, a disease caused by defects in AVP-mediated water reabsorption.


Assuntos
Aquaporina 2/metabolismo , AMP Cíclico/metabolismo , Animais , Arginina Vasopressina/metabolismo , Humanos , Transdução de Sinais , Água/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(27): 13320-13329, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209056

RESUMO

Cyclic AMP (cAMP) phosphodiesterase-4 (PDE4) enzymes degrade cAMP and underpin the compartmentalization of cAMP signaling through their targeting to particular protein complexes and intracellular locales. We describe the discovery and characterization of a small-molecule compound that allosterically activates PDE4 long isoforms. This PDE4-specific activator displays reversible, noncompetitive kinetics of activation (increased Vmax with unchanged Km), phenocopies the ability of protein kinase A (PKA) to activate PDE4 long isoforms endogenously, and requires a dimeric enzyme assembly, as adopted by long, but not by short (monomeric), PDE4 isoforms. Abnormally elevated levels of cAMP provide a critical driver of the underpinning molecular pathology of autosomal dominant polycystic kidney disease (ADPKD) by promoting cyst formation that, ultimately, culminates in renal failure. Using both animal and human cell models of ADPKD, including ADPKD patient-derived primary cell cultures, we demonstrate that treatment with the prototypical PDE4 activator compound lowers intracellular cAMP levels, restrains cAMP-mediated signaling events, and profoundly inhibits cyst formation. PDE4 activator compounds thus have potential as therapeutics for treating disease driven by elevated cAMP signaling as well as providing a tool for evaluating the action of long PDE4 isoforms in regulating cAMP-mediated cellular processes.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Cães , Ativação Enzimática/efeitos dos fármacos , Humanos , Células Madin Darby de Rim Canino , Fosforilação , Doenças Renais Policísticas/metabolismo , Isoformas de Proteínas
15.
J Cardiovasc Dev Dis ; 5(1)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461511

RESUMO

A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3'-5' monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.

16.
PLoS One ; 13(1): e0191423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29373579

RESUMO

Stimulation of renal collecting duct principal cells with antidiuretic hormone (arginine-vasopressin, AVP) results in inhibition of the small GTPase RhoA and the enrichment of the water channel aquaporin-2 (AQP2) in the plasma membrane. The membrane insertion facilitates water reabsorption from primary urine and fine-tuning of body water homeostasis. Rho guanine nucleotide exchange factors (GEFs) interact with RhoA, catalyze the exchange of GDP for GTP and thereby activate the GTPase. However, GEFs involved in the control of AQP2 in renal principal cells are unknown. The A-kinase anchoring protein, AKAP-Lbc, possesses GEF activity, specifically activates RhoA, and is expressed in primary renal inner medullary collecting duct principal (IMCD) cells. Through screening of 18,431 small molecules and synthesis of a focused library around one of the hits, we identified an inhibitor of the interaction of AKAP-Lbc and RhoA. This molecule, Scaff10-8, bound to RhoA, inhibited the AKAP-Lbc-mediated RhoA activation but did not interfere with RhoA activation through other GEFs or activities of other members of the Rho family of small GTPases, Rac1 and Cdc42. Scaff10-8 promoted the redistribution of AQP2 from intracellular vesicles to the periphery of IMCD cells. Thus, our data demonstrate an involvement of AKAP-Lbc-mediated RhoA activation in the control of AQP2 trafficking.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Aquaporina 2/metabolismo , Membrana Celular/metabolismo , Túbulos Renais Coletores/citologia , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Membrana Celular/efeitos dos fármacos , Células HEK293 , Humanos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
17.
J Physiol ; 595(10): 3181-3202, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28194788

RESUMO

KEY POINTS: ß-Adrenergic stimulation enhances Ca2+ entry via L-type CaV 1.2 channels, causing stronger contraction of cardiac muscle cells. The signalling pathway involves activation of protein kinase A (PKA), but the molecular details of PKA regulation of CaV 1.2 remain controversial despite extensive research. We show that PKA regulation of CaV 1.2 can be reconstituted in Xenopus oocytes when the distal C-terminus (dCT) of the main subunit, α1C , is truncated. The PKA upregulation of CaV 1.2 does not require key factors previously implicated in this mechanism: the clipped dCT, the A kinase-anchoring protein 15 (AKAP15), the phosphorylation sites S1700, T1704 and S1928, or the ß subunit of CaV 1.2. The gating element within the initial segment of the N-terminus of the cardiac isoform of α1C is essential for the PKA effect. We propose that the regulation described here is one of two or several mechanisms that jointly mediate the PKA regulation of CaV 1.2 in the heart. ABSTRACT: ß-Adrenergic stimulation enhances Ca2+ currents via L-type, voltage-gated CaV 1.2 channels, strengthening cardiac contraction. The signalling via ß-adrenergic receptors (ß-ARs) involves elevation of cyclic AMP (cAMP) levels and activation of protein kinase A (PKA). However, how PKA affects the channel remains controversial. Recent studies in heterologous systems and genetically engineered mice stress the importance of the post-translational proteolytic truncation of the distal C-terminus (dCT) of the main (α1C ) subunit. Here, we successfully reconstituted the cAMP/PKA regulation of the dCT-truncated CaV 1.2 in Xenopus oocytes, which previously failed with the non-truncated α1C . cAMP and the purified catalytic subunit of PKA, PKA-CS, injected into intact oocytes, enhanced CaV 1.2 currents by ∼40% (rabbit α1C ) to ∼130% (mouse α1C ). PKA blockers were used to confirm specificity and the need for dissociation of the PKA holoenzyme. The regulation persisted in the absence of the clipped dCT (as a separate protein), the A kinase-anchoring protein AKAP15, and the phosphorylation sites S1700 and T1704, previously proposed as essential for the PKA effect. The CaV ß2b subunit was not involved, as suggested by extensive mutagenesis. Using deletion/chimeric mutagenesis, we have identified the initial segment of the cardiac long-N-terminal isoform of α1C as a previously unrecognized essential element involved in PKA regulation. We propose that the observed regulation, that exclusively involves the α1C subunit, is one of several mechanisms underlying the overall PKA action on CaV 1.2 in the heart. We hypothesize that PKA is acting on CaV 1.2, in part, by affecting a structural 'scaffold' comprising the interacting cytosolic N- and C-termini of α1C .


Assuntos
Canais de Cálcio Tipo L/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Oócitos/fisiologia , Subunidades Proteicas/fisiologia , Animais , AMP Cíclico/fisiologia , Xenopus laevis
18.
Nat Commun ; 7: 12963, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713425

RESUMO

Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/patologia , Células 3T3 , Animais , Carcinogênese/patologia , Domínio Catalítico/fisiologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/patologia , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Ligação Proteica/fisiologia , Inibidores de Proteínas Quinases/metabolismo , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia
19.
J Biol Chem ; 291(37): 19618-30, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27484798

RESUMO

The A-kinase anchoring protein (AKAP) GSK3ß interaction protein (GSKIP) is a cytosolic scaffolding protein binding protein kinase A (PKA) and glycogen synthase kinase 3ß (GSK3ß). Here we show that both the AKAP function of GSKIP, i.e. its direct interaction with PKA, and its direct interaction with GSK3ß are required for the regulation of ß-catenin and thus Wnt signaling. A cytoplasmic destruction complex targets ß-catenin for degradation and thus prevents Wnt signaling. Wnt signals cause ß-catenin accumulation and translocation into the nucleus, where it induces Wnt target gene expression. GSKIP facilitates control of the ß-catenin stabilizing phosphorylation at Ser-675 by PKA. Its interaction with GSK3ß facilitates control of the destabilizing phosphorylation of ß-catenin at Ser-33/Ser-37/Thr-41. The influence of GSKIP on ß-catenin is explained by its scavenger function; it recruits the kinases away from the destruction complex without forming a complex with ß-catenin. The regulation of ß-catenin by GSKIP is specific for this AKAP as AKAP220, which also binds PKA and GSK3ß, did not affect Wnt signaling. We find that the binding domain of AKAP220 for GSK3ß is a conserved GSK3ß interaction domain (GID), which is also present in GSKIP. Our findings highlight an essential compartmentalization of both PKA and GSK3ß by GSKIP, and ascribe a function to a cytosolic AKAP-PKA interaction as a regulatory factor in the control of canonical Wnt signaling. Wnt signaling controls different biological processes, including embryonic development, cell cycle progression, glycogen metabolism, and immune regulation; deregulation is associated with diseases such as cancer, type 2 diabetes, inflammatory, and Alzheimer's and Parkinson's diseases.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Proteínas de Ancoragem à Quinase A , Células A549 , Proteínas Quinases Dependentes de AMP Cíclico/genética , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Células HeLa , Humanos , Domínios Proteicos , Proteínas Repressoras/genética , beta Catenina/genética
20.
Biochem J ; 473(13): 1881-94, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27102985

RESUMO

A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18ß bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18ß outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions.


Assuntos
Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Células HEK293 , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transdução de Sinais , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA