Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 238(6): 2685-2697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960534

RESUMO

Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.


Assuntos
Capsicum , Solanum , Fósseis , Frutas , América do Sul , Filogenia
2.
PhytoKeys ; 202: 73-96, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761819

RESUMO

A new genus, Doselia A.Orejuela & Särkinen, gen. nov., is described in the tribe Solandreae (Solanaceae) consisting of four species of hemiepiphytic lianas endemic to the premontane forests of the Colombian and Ecuadorian Andes. The genus is distinguished based on the membranous leaves, usually sparsely pubescent with eglandular simple trichomes, pseudo-verticillate leaf arrangement, and elongated, pendulous, and few-flowered inflorescences with showy flowers and conical fruits. Three new combinations are made to transfer species to the new genus previously described as part of the polyphyletic genus Markea Rich. (Doseliaepifita (S.Knapp) A.Orejuela & Särkinen, comb. nov., D.huilensis (A.Orejuela & J.M.Vélez) A.Orejuela & Särkinen, comb. nov. and D.lopezii (Hunz.) A.Orejuela & Särkinen, comb. nov.). One new species is described from the western slopes of the eastern cordillera of the Colombian Andes, known only from three localities in the Boyacá, Santander, and Tolima departments (Doseliagalilensis A.Orejuela & Villanueva, sp. nov.). The new species is unique in the genus in having glabrescent adult leaves, green-purplish calyces and long, greenish-white, infundibuliform corollas with delicate purplish veins and large lobes tinged with purple, and pubescent styles. Here we provide a revision of Doselia with a distribution map of all species, an identification key, photographs, preliminary conservation assessments, and line drawings of all four species.


ResumenUn nuevo género, Doselia A.Orejuela & Särkinen, gen. nov., es descrito en la tribu Solandreae (Solanaceae), conformado por cuatro especies de lianas hemiepífitas endémicas de los bosques premontanos de los Andes de Colombia y Ecuador. El género se distingue por sus hojas membranáceas con tricomas simples no glandulares, el arreglo pseudoverticilado de las hojas y sus inflorescencias paucifloras, largo pedunculadas y péndulas, flores vistosas y frutos cónicos. Se proponen tres nuevas combinaciones para acomodar especies previamente descritas en el polifilético género Markea Rich. (Doseliaepifita (S.Knapp) A.Orejuela & Särkinen, comb. nov., D.huilensis (A.Orejuela & J.M.Vélez) A.Orejuela & Särkinen, comb. nov. and D.lopezii (Hunz.) A.Orejuela & Särkinen, comb. nov.) Una nueva especie es descrita aquí proveniente de la vertiente occidental de la cordillera Oriental de los Andes colombianos, y conocida únicamente de tres localidades en los departamentos de Boyacá, Santander y Tolima (Doseliagalilensis A.Orejuela & Villanueva, sp. nov.). La nueva especie se caracteriza por sus hojas glabrescentes cuando adultas, cáliz verde-púrpura, corolas infundibuliformes grandes, blanco-verdosas con una reticulación fina de venas púrpuras, lóbulos corolinos grandes y teñidos de púrpura en su lado ventral y estilos pubescentes. El nuevo género es formalmente descrito incluyendo un mapa de distribución, una clave taxonómica y fotografías e ilustraciones para sus cuatro especies.

3.
BMC Plant Biol ; 19(1): 162, 2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029077

RESUMO

BACKGROUND: Polyploidy has played a major role in angiosperm evolution. Previous studies have examined polyploid phenotypes in comparison to their extant progenitors, but not in context of predicted progenitor phenotypes at allopolyploid origin. In addition, differences in the trends of polyploid versus diploid evolution have not been investigated. We use ancestral character-state reconstructions to estimate progenitor phenotype at allopolyploid origin to determine patterns of polyploid evolution leading to morphology of the extant species. We also compare trends in diploid versus allopolyploid evolution to determine if polyploidy modifies floral evolutionary patterns. RESULTS: Predicting the ancestral phenotype of a nascent allopolyploid from reconstructions of diploid phenotypes at the time of polyploid formation generates different phenotype predictions than when extant diploid phenotypes are used, the outcome of which can alter conclusions about polyploid evolution; however, most analyses yield the same results. Using ancestral reconstructions of diploid floral phenotypes indicate that young polyploids evolve shorter, wider corolla tubes, but older polyploids and diploids do not show any detectable evolutionary trends. Lability of the traits examined (floral shape, corolla tube length, and corolla tube width) differs across young and older polyploids and diploids. Corolla length is more evolutionarily labile in older polyploids and diploids. Polyploids do not display unique suites of floral characters based on both morphological and color traits, but some suites of characters may be evolving together and seem to have arisen multiple times within Nicotiana, perhaps due to the influence of pollinators. CONCLUSIONS: Young polyploids display different trends in floral evolution (shorter, wider corolla tubes, which may result in more generalist pollination) than older polyploids and diploids, suggesting that patterns of divergence are impacted by the early consequences of allopolyploidy, perhaps arising from genomic shock and/or subsequent genome stabilization associated with diploidization. Convergent evolution in floral morphology and color in Nicotiana can be consistent with pollinator preferences, suggesting that pollinators may have shaped floral evolution in Nicotiana.


Assuntos
Evolução Biológica , Flores/genética , Poliploidia , Solanaceae/genética , Bases de Dados Genéticas , Diploide , Flores/anatomia & histologia , Fenótipo , Filogenia , Solanaceae/anatomia & histologia
4.
PhytoKeys ; (106): 1-223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30072843

RESUMO

The Morelloid clade, also known as the black nightshades or "Maurella" (Morella), is one of the 10 major clades within Solanum L. The pantropical clade consists of 75 currently recognised non-spiny herbaceous and suffrutescent species with simple or branched hairs with or without glandular tips, with a centre of distribution in the tropical Andes. A secondary centre of diversity is found in Africa, where a set of mainly polyploid taxa occur. A yet smaller set of species is found in Australasia and Europe, including Solanum nigrum L., the type of the genus Solanum. Due to the large number of published synonyms, combined with complex morphological variation, our understanding of species limits and diversity in the Morelloid clade has remained poor despite detailed morphological studies carried out in conjunction with breeding experiments. Here we provide the first taxonomic overview since the 19th century of the entire group in the Old World, including Africa, Asia, Australia, Europe and islands of the Pacific. Complete synonymy, morphological descriptions, distribution maps and common names and uses are provided for all 19 species occurring outside the Americas (i.e. Africa, Asia, Australia, Europe and islands of the Pacific). We treat 12 species native to the Old World, as well as 7 taxa that are putatively introduced and/or invasive in the region. The current knowledge of the origin of the polyploid species is summarised. A key to all of the species occurring in the Old World is provided, together with line drawings and colour figures to aid identification both in herbaria and in the field. Preliminary conservation assessments are provided for all species.

5.
PLoS One ; 12(1): e0167764, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052088

RESUMO

Food security is threatened by newly emerging pests with increased invasive potential accelerated through globalization. The Neotropical jumping plant louse Russelliana solanicola Tuthill is currently a localized potato pest and probable vector of plant pathogens. It is an unusually polyphagous species and is widely distributed in and along the Andes. To date, introductions have been detected in eastern Argentina, southern Brazil and Uruguay. Species distribution models (SDMs) and trait comparisons based on contemporary and historical collections are used to estimate the potential spread of R. solanicola worldwide. We also extend our analyses to all described species in the genus Russelliana in order to assess the value of looking beyond pest species to predict pest spread. We investigate the extent to which data on geographical range and environmental niche can be effectively extracted from museum collections for comparative analyses of pest and non-pest species in Russelliana. Our results indicate that R. solanicola has potential for invasion in many parts of the world with suitable environmental conditions that currently have or are anticipated to increase potato cultivation. Large geographical ranges are characteristic of a morphological subgeneric taxon group that includes R. solanicola; this same group also has a larger environmental breadth than other groups within the genus. Ecological modelling using museum collections provides a useful tool for identifying emerging pests and developing integrated pest management programs.


Assuntos
Produtos Agrícolas/parasitologia , Hemípteros/fisiologia , Controle de Pragas , Solanum tuberosum/parasitologia , Animais , Ecossistema , Geografia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Modelos Teóricos , Análise de Componente Principal , Característica Quantitativa Herdável , América do Sul , Especificidade da Espécie , Estatística como Assunto
6.
Nat Plants ; 2: 16119, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27501400

RESUMO

Polyploidy is an important driving force in angiosperm evolution, and much research has focused on genetic, epigenetic and transcriptomic responses to allopolyploidy. Nicotiana is an excellent system in which to study allopolyploidy because half of the species are allotetraploids of different ages, allowing us to examine the trajectory of floral evolution over time. Here, we study the effects of allopolyploidy on floral morphology in Nicotiana, using corolla tube measurements and geometric morphometrics to quantify petal shape. We show that polyploid morphological divergence from the intermediate phenotype expected (based on progenitor morphology) increases with time for floral limb shape and tube length, and that most polyploids are distinct or transgressive in at least one trait. In addition, we show that polyploids tend to evolve shorter and wider corolla tubes, suggesting that allopolyploidy could provide an escape from specialist pollination via reversion to more generalist pollination strategies.


Assuntos
Evolução Biológica , Flores/anatomia & histologia , Nicotiana/fisiologia , Fenótipo , Polinização , Poliploidia , Flores/genética , Nicotiana/anatomia & histologia , Nicotiana/genética
7.
Ann Bot ; 115(7): 1117-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25979919

RESUMO

BACKGROUND AND AIMS: Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. METHODS: Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. KEY RESULTS: Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. CONCLUSIONS: Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators.


Assuntos
Evolução Biológica , Cor , Flores/fisiologia , Hibridização Genética , Nicotiana/fisiologia , Poliploidia , Pigmentação , Nicotiana/genética
8.
BMC Plant Biol ; 14: 350, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25491265

RESUMO

BACKGROUND: Eggplant is a powerful source of polyphenols which seems to play a key role in the prevention of several human diseases, such as cancer and diabetes. Chlorogenic acid is the polyphenol most present in eggplant, comprising between the 70% and 90% of the total polyphenol content. Introduction of the high chlorogenic acid content of wild relatives, such as S. incanum, into eggplant varieties will be of great interest. A potential side effect of the increased level polyphenols could be a decrease on apparent quality due to browning caused by the polyphenol oxidase enzymes mediated oxidation of polyphenols. We report the development of a new interspecific S. melongena × S. incanum linkage map based on a first backcross generation (BC1) towards the cultivated S. melongena as a tool for introgressing S. incanum alleles involved in the biosynthesis of chlorogenic acid in the genetic background of S. melongena. RESULTS: The interspecific genetic linkage map of eggplant developed in this work anchor the most informative previously published genetic maps of eggplant using common markers. The 91 BC1 plants of the mapping population were genotyped with 42 COSII, 99 SSRs, 88 AFLPs, 9 CAPS, 4 SNPs and one morphological polymorphic markers. Segregation marker data resulted in a map encompassing 1085 cM distributed in 12 linkage groups. Based on the syntheny with tomato, the candidate genes involved in the core chlorogenic acid synthesis pathway in eggplant (PAL, C4H, 4CL, HCT, C3'H, HQT) as well as five polyphenol oxidase (PPO1, PPO2, PPO3, PPO4, PPO5) were mapped. Except for 4CL and HCT chlorogenic acid genes were not linked. On the contrary, all PPO genes clustered together. Candidate genes important in domestication such as fruit shape (OVATE, SISUN1) and prickliness were also located. CONCLUSIONS: The achievements in location of candidate genes will allow the search of favorable alleles employing marker-assisted selection in order to develop new varieties with higher chlorogenic content alongside a lower polyphenol oxidase activity. This will result into an enhanced product showing a lower fruit flesh browning with improved human health properties.


Assuntos
Catecol Oxidase/genética , Ácido Clorogênico/metabolismo , Ligação Genética , Proteínas de Plantas/genética , Solanum/enzimologia , Solanum/genética , Catecol Oxidase/metabolismo , Mapeamento Cromossômico , Proteínas de Plantas/metabolismo , Solanum melongena/enzimologia , Solanum melongena/genética , Sintenia
10.
BMC Evol Biol ; 13: 214, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24283922

RESUMO

BACKGROUND: The Solanaceae is a plant family of great economic importance. Despite a wealth of phylogenetic work on individual clades and a deep knowledge of particular cultivated species such as tomato and potato, a robust evolutionary framework with a dated molecular phylogeny for the family is still lacking. Here we investigate molecular divergence times for Solanaceae using a densely-sampled species-level phylogeny. We also review the fossil record of the family to derive robust calibration points, and estimate a chronogram using an uncorrelated relaxed molecular clock. RESULTS: Our densely-sampled phylogeny shows strong support for all previously identified clades of Solanaceae and strongly supported relationships between the major clades, particularly within Solanum. The Tomato clade is shown to be sister to section Petota, and the Regmandra clade is the first branching member of the Potato clade. The minimum age estimates for major splits within the family provided here correspond well with results from previous studies, indicating splits between tomato and potato around 8 Million years ago (Ma) with a 95% highest posterior density (HPD) 7-10 Ma, Solanum and Capsicum c. 19 Ma (95% HPD 17-21), and Solanum and Nicotiana c. 24 Ma (95% HPD 23-26). CONCLUSIONS: Our large time-calibrated phylogeny provides a significant step towards completing a fully sampled species-level phylogeny for Solanaceae, and provides age estimates for the whole family. The chronogram now includes 40% of known species and all but two monotypic genera, and is one of the best sampled angiosperm family phylogenies both in terms of taxon sampling and resolution published thus far. The increased resolution in the chronogram combined with the large increase in species sampling will provide much needed data for the examination of many biological questions using Solanaceae as a model system.


Assuntos
Filogenia , Solanaceae/genética , Evolução Biológica , Evolução Molecular , Fósseis , Solanaceae/classificação
11.
Evolution ; 67(1): 80-94, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23289563

RESUMO

Nicotiana (Solanaceae) provides an ideal system for understanding polyploidization, a pervasive and powerful evolutionary force in plants, as this genus contains several groups of allotetraploids that formed at different times from different diploid progenitors. However, the parental lineages of the largest group of allotetraploids, Nicotiana section Suaveolentes, have been problematic to identify. Using data from four regions of three low-copy nuclear genes, nuclear ribosomal DNA, and regions of the plastid genome, we have reconstructed the evolutionary origin of sect. Suaveolentes and identified the most likely diploid progenitors by using a combination of gene trees and network approaches to uncover the most strongly supported evidence of species relationships. Our analyses best support a scenario where a member of the sect. Sylvestres lineage acted as the paternal progenitor and a member of either sect. Petunioides or sect. Noctiflorae that also contained introgressed DNA from the other, or a hypothetical hybrid species between these two sections, was the maternal progenitor. Nicotiana exemplifies many of the factors that can complicate the reconstruction of polyploid evolutionary history and highlights how reticulate evolution at the diploid level can add even greater complexity to allopolyploid genomes.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Nicotiana/genética , Filogenia , Poliploidia , Quimera/genética , Diploide , Genes de Plantas , Genes de RNAr , Genomas de Plastídeos
12.
Philos Trans R Soc Lond B Biol Sci ; 365(1539): 449-60, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20047871

RESUMO

Members of the euasterid angiosperm family Solanaceae have been characterized as remarkably diverse in terms of flower morphology and pollinator type. In order to test the relative contribution of phylogeny to the pattern of distribution of floral characters related to pollination, flower form and pollinators have been mapped onto a molecular phylogeny of the family. Bilateral flower symmetry (zygomorphy) is prevalent in the basal grades of the family, and more derived clades have flowers that are largely radially symmetric, with some parallel evolution of floral bilateralism. Pollinator types ('syndromes') are extremely homoplastic in the family, but members of subfamily Solanoideae are exceptional in being largely bee pollinated. Pollinator relationships in those genera where they have been investigated more fully are not as specific as flower morphology and the classical pollinator syndrome models might suggest, and more detailed studies in some particularly variable genera, such as Iochroma and Nicotiana, are key to understanding the role of pollinators in floral evolution and adaptive radiation in the family. More studies of pollinators in the field are a priority.


Assuntos
Evolução Molecular , Flores/fisiologia , Polinização/fisiologia , Solanaceae/fisiologia , Animais , Abelhas , Flores/anatomia & histologia , Flores/genética , Filogenia , Polinização/genética , Solanaceae/anatomia & histologia , Solanaceae/genética
13.
Mol Phylogenet Evol ; 55(1): 99-112, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19818862

RESUMO

Interspecies relationships in Nicotiana (Solanaceae) are complex because 40 species are diploid (two sets of chromosomes) and 35 species are allotetraploid (four sets of chromosomes, two from each progenitor diploid species). We sequenced a fragment (containing four introns) of the nuclear gene 'chloroplast-expressed glutamine synthetase' (ncpGS) in 65 species of Nicotiana. Here we present the first phylogenetic analysis based on a low-copy nuclear gene for this well studied and important genus. Diploid species have a single-copy of ncpGS, and allotetraploids as expected have two homeologous copies, each derived from their progenitor diploid. Results were particularly useful for determining the paternal lineage of previously enigmatic taxa (for which our previous analyses had revealed only the maternal progenitors). In particular, we were able to shed light on the origins of the two oldest and largest allotetraploid sections, N. sects. Suaveolentes and Repandae. All homeologues have an intact reading frame and apparently similar rates of divergence, suggesting both remain functional. Difficulties in fitting certain diploid species into the sectional classification of Nicotiana on morphological grounds, coupled with discordance between the ncpGS data and previous trees (i.e. plastid, nuclear ribosomal DNA), indicate a number of homoploid (diploid) hybrids in the genus. We have evidence for Nicotiana glutinosa and Nicotiana linearis being of hybrid origin and patterns of intra-allelic recombination also indicate the possibility of reticulate origins for other diploid species.


Assuntos
Evolução Molecular , Glutamato-Amônia Ligase/genética , Nicotiana/genética , Filogenia , Teorema de Bayes , DNA de Plantas/genética , Poliploidia , Recombinação Genética , Análise de Sequência de DNA , Nicotiana/classificação , Nicotiana/enzimologia
14.
Mol Biol Evol ; 27(4): 781-99, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19897524

RESUMO

Reticulate evolution may function both at the species level, through homoploid and polyploid hybridization, and below the species level, through inter and intragenic recombination. These processes represent challenges for the reconstruction of evolutionary relationships between species, because they cannot be represented adequately with bifurcating trees. We use data from low-copy nuclear genes to evaluate long-standing hypotheses of homoploid (interspecific) hybrid speciation in Nicotiana (Solanaceae) and reconstruct a complex series of reticulation events that have been important in the evolutionary history of this genus. Hybrid origins for three diploid species (Nicotiana glauca, N. linearis, and N. spegazzinii) are inferred on the basis of gene tree incongruence, evidence for interallelic recombination between likely parental alleles, and support for incompatible splits in Lento plots. Phylogenetic analysis of recombinant gene sequences illustrates that recombinants may be resolved with one of their progenitor lineages with a high posterior probability under Bayesian inference, and thus there is no indication of the conflict between phylogenetic signals that results from reticulation. Our results illustrate the importance of hybridization in shaping evolution in Nicotiana and also show that intragenic recombination may be relatively common. This finding demonstrates that it is important to investigate the possibility of recombination when aiming to detect hybrids from DNA-sequence data and reconstruct patterns of reticulate evolution between species.


Assuntos
Nicotiana/genética , Hibridização Genética , Filogenia , Recombinação Genética
15.
Ann Bot ; 101(6): 815-23, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18310159

RESUMO

BACKGROUND: The evolution and biology of rDNA have interested biologists for many years, in part, because of two intriguing processes: (1) nucleolar dominance and (2) sequence homogenization. We review patterns of evolution in rDNA in the angiosperm genus Nicotiana to determine consequences of allopolyploidy on these processes. SCOPE: Allopolyploid species of Nicotiana are ideal for studying rDNA evolution because phylogenetic reconstruction of DNA sequences has revealed patterns of species divergence and their parents. From these studies we also know that polyploids formed over widely different timeframes (thousands to millions of years), enabling comparative and temporal studies of rDNA structure, activity and chromosomal distribution. In addition studies on synthetic polyploids enable the consequences of de novo polyploidy on rDNA activity to be determined. CONCLUSIONS: We propose that rDNA epigenetic expression patterns established even in F(1) hybrids have a material influence on the likely patterns of divergence of rDNA. It is the active rDNA units that are vulnerable to homogenization, which probably acts to reduce mutational load across the active array. Those rDNA units that are epigenetically silenced may be less vulnerable to sequence homogenization. Selection cannot act on these silenced genes, and they are likely to accumulate mutations and eventually be eliminated from the genome. It is likely that whole silenced arrays will be deleted in polyploids of 1 million years of age and older.


Assuntos
DNA Ribossômico/genética , Epigênese Genética , Evolução Molecular , Nicotiana/genética , DNA de Plantas/genética , Filogenia , Poliploidia
16.
Plant J ; 48(6): 907-19, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17227546

RESUMO

Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.


Assuntos
Evolução Molecular , Genoma de Planta , Nicotiana/genética , Sequências de Repetição em Tandem , Cromossomos de Plantas , DNA Ribossômico/genética , Diploide , Genômica , Cariotipagem , Filogenia , RNA Ribossômico 5S/genética
17.
New Phytol ; 168(1): 241-52, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16159337

RESUMO

Here, we analyze long-term evolution in Nicotiana allopolyploid section Repandae (the closest living diploids are N. sylvestris, the maternal parent, and N. obtusifolia, the paternal parent). We compare data with other more recently formed Nicotiana allopolyploids. We investigated 35S and 5S nuclear ribosomal DNA (rDNA) chromosomal location and unit divergence. A molecular clock was applied to the Nicotiana phylogenetic tree to determine allopolyploid ages. N. tabacum and species of Repandae were c. 0.2 and 4.5 Myr old, respectively. In all Repandae species, the numbers of both 35S and 5S rDNA loci were less than the sum of those of the diploid progenitors. Trees based on 5S rDNA spacer sequences indicated units of only the paternal parent. In recent Nicotiana allopolyploids, the numbers of rDNA loci equal the sum of those of their progenitors. In the Repandae genomes, diploidization is associated with locus loss. Sequence analysis indicates that 35S and 5S units most closely resemble maternal and paternal progenitors, respectively. In Nicotiana, 4.5 Myr of allopolyploid evolution renders genomic in situ hybridization (GISH) unsuitable for the complete resolution of parental genomes.


Assuntos
DNA Ribossômico/genética , Genoma de Planta , Nicotiana/genética , Evolução Biológica , DNA de Plantas , Filogenia , Ploidias , Especificidade da Espécie
18.
Mol Phylogenet Evol ; 33(1): 75-90, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15324840

RESUMO

For Nicotiana, with 75 naturally occurring species (40 diploids and 35 allopolyploids), we produced 4656bp of plastid DNA sequence for 87 accessions and various outgroups. The loci sequenced were trnL intron and trnL-F spacer, trnS-G spacer and two genes, ndhF and matK. Parsimony and Bayesian analyses yielded identical relationships for the diploids, and these are consistent with other data, producing the best-supported phylogenetic assessment currently available for the genus. For the allopolyploids, the line of maternal inheritance is traced via the plastid tree. Nicotiana and the Australian endemic tribe Anthocercideae form a sister pair. Symonanthus is sister to the rest of Anthocercideae. Nicotiana sect. Tomentosae is sister to the rest of the genus. The maternal parent of the allopolyploid species of N. sect. Polydicliae were ancestors of the same species, but the allopolyploids were produced at different times, thus making such sections paraphyletic to their extant diploid relatives. Nicotiana is likely to have evolved in southern South America east of the Andes and later dispersed to Africa, Australia, and southwestern North America.


Assuntos
Nicotiana/genética , Filogenia , Plastídeos/genética , Sequência de Bases , Teorema de Bayes , Primers do DNA , Geografia , Modelos Genéticos , Dados de Sequência Molecular , Ploidias , Análise de Sequência de DNA , Nicotiana/classificação
19.
Ann Bot ; 92(1): 107-27, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12824072

RESUMO

Phylogenetic relationships in the genus Nicotiana were investigated using parsimony analyses of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (nrDNA). In addition, origins of some amphidiploid taxa in Nicotiana were investigated using the techniques of genomic in situ hybridization (GISH), and the results of both sets of analyses were used to evaluate previous hypotheses about the origins of these taxa. Phylogenetic analyses of the ITS nrDNA data were performed on the entire genus (66 of 77 naturally occurring species, plus three artificial hybrids), comprising both diploid and polyploid taxa, and on the diploid taxa only (35 species) to examine the effects of amphidiploids on estimates of relationships. All taxa, regardless of ploidy, produced clean, single copies of the ITS region, even though some taxa are hybrids. Results are compared with a published plastid (matK) phylogeny using fewer, but many of the same, taxa. The patterns of relationships in Nicotiana, as seen in both analyses, are largely congruent with each other and previous evolutionary ideas based on morphology and cytology, but some important differences are apparent. None of the currently recognized subgenera of Nicotiana is monophyletic and, although most of the currently recognized sections are coherent, others are clearly polyphyletic. Relying solely upon ITS nrDNA analysis to reveal phylogenetic patterns in a complex genus such as Nicotiana is insufficient, and it is clear that conventional analysis of single data sets, such as ITS, is likely to be misleading in at least some respects about evolutionary history. ITS sequences of natural and well-documented amphidiploids are similar or identical to one of their two parents-usually, but not always, the maternal parent-and are not in any sense themselves 'hybrid'. Knowing how ITS evolves in artificial amphidiploids gives insight into what ITS analysis might reveal about naturally occurring amphidiploids of unknown origin, and it is in this perspective that analysis of ITS sequences is highly informative.


Assuntos
DNA Espaçador Ribossômico/genética , Genoma de Planta , Hibridização Genética/genética , Nicotiana/classificação , Nicotiana/genética , Filogenia , DNA de Plantas/genética , Evolução Molecular , Variação Genética , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase
20.
J Exp Bot ; 53(377): 2001-22, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12324525

RESUMO

The Solanaceae contains many species of agricultural importance. Several of these are cultivated for their fruits, such as the tomato, the pepper and the aubergine. The family is very diverse in fruit type with capsules, drupes, pyrenes, berries, and several sorts of dehiscent non-capsular fruits occurring in the 90+ genera. In this paper, recent work on fruit type evolution in angiosperms is reviewed in relation to dispersal agents and habitat ecology. Defining fruit types in the Solanaceae in a simple five state system, then mapping them onto a previously published molecular phylogeny based on chloroplast DNA allows discussion of the evolution of these fruit types in a phylogenetic framework. Capsules are plesiomorphic in the family, and although berries are a synapomorphy (shared derived character) for a large clade including the genus Solanum (tomatoes and aubergines), they have arisen several times in the family as a whole. Problems with homology of drupes and pyrenes are discussed, and areas for future investigation of fruit structure homology identified. The distribution of fruit types in the large and diverse genus Solanum is also discussed in the light of monophyletic groups identified using chloroplast gene sequences. This variety is related to recent advances in the understanding of the molecular biology of fruit development. Finally, several key areas of future comparative, phylogenetic investigation into fruit type evolution in the family are highlighted.


Assuntos
Frutas/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento , Filogenia , Solanum lycopersicum/crescimento & desenvolvimento , Atropa belladonna/classificação , Atropa belladonna/genética , Capsicum/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cloroplastos/genética , Evolução Molecular , Frutas/genética , Solanum lycopersicum/genética , Pigmentos Biológicos/biossíntese , Solanaceae/classificação , Solanaceae/genética , Solanaceae/crescimento & desenvolvimento , Solanum tuberosum/classificação , Solanum tuberosum/genética , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA