Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0291023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966207

RESUMO

IMPORTANCE: The oral cavity is the ultimate doorway for microbes entering the human body. We analyzed oral microbiota dynamics in allogeneic hematopoietic stem-cell transplant recipients and showed that microbiota injury and recovery patterns were highly informative on transplant complications and outcomes. Our results highlight the importance of tracking the recipient's microbiota changes during allogeneic hematopoietic stem-cell transplant to improve our understanding of its biology, safety, and efficacy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Microbiota , Boca , Humanos , Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas/métodos , Transplantados
2.
Sci Rep ; 12(1): 17527, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266464

RESUMO

Oral mucositis (OM) is a complex acute cytotoxicity of antineoplastic treatment that affects 40-85% of patients undergoing hematopoietic stem-cell transplantation. OM is associated with prolonged hospitalization, increased extensive pharmacotherapy, need for parenteral nutrition, and elevated treatment costs. As OM onset relates to the mucosal microenvironment status, with a particular role for microbiota-driven inflammation, we aimed to investigate whether the oral mucosa microbiota was associated with the clinical course of OM in patients undergoing allogeneic hematopoietic stem-cell transplantation. We collected oral mucosa samples from 30 patients and analyzed the oral mucosa microbiota by 16S rRNA sequencing. A total of 13 patients (43%) developed ulcerative OM. We observed that specific taxa were associated with oral mucositis grade and time to oral mucositis healing. Porphyromonas relative abundance at preconditioning was positively correlated with ulcerative OM grade (Spearman ρ = 0.61, P = 0.028) and higher Lactobacillus relative abundance at ulcerative OM onset was associated with shortened ulcerative OM duration (P = 0.032). Additionally, we generated a machine-learning-based bacterial signature that uses pre-treatment microbial profiles to predict whether a patient will develop OM during treatment. Our findings suggest that further research should focus on host-microbiome interactions to better prevent and treat OM.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Microbiota , Estomatite Aftosa , Estomatite , Humanos , RNA Ribossômico 16S/genética , Estomatite/microbiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mucosa Bucal/microbiologia
3.
Front Immunol ; 12: 692225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220852

RESUMO

Acute graft-versus-host disease (aGVHD) is one of the major causes of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recently, aGVHD onset was linked to intestinal microbiota (IM) dysbiosis. However, other bacterial-rich gastrointestinal sites, such as the mouth, which hosts several distinctive microbiotas, may also impact the risk of GVHD. The dental biofilm microbiota (DBM) is highly diverse and, like the IM, interacts with host cells and modulates immune homeostasis. We characterized changes in the DBM of patients during allo-HSCT and evaluated whether the DBM could be associated with the risk of aGVHD. DBM dysbiosis during allo-HSCT was marked by a gradual loss of bacterial diversity and changes in DBM genera composition, with commensal genera reductions and potentially pathogenic bacteria overgrowths. High Streptococcus and high Corynebacterium relative abundance at preconditioning were associated with a higher risk of aGVHD (67% vs. 33%; HR = 2.89, P = 0.04 and 73% vs. 37%; HR = 2.74, P = 0.04, respectively), while high Veillonella relative abundance was associated with a lower risk of aGVHD (27% vs. 73%; HR = 0.24, P < 0.01). Enterococcus faecalis bloom during allo-HSCT was observed in 17% of allo-HSCT recipients and was associated with a higher risk of aGVHD (100% vs. 40%; HR = 4.07, P < 0.001) and severe aGVHD (60% vs. 12%; HR = 6.82, P = 0.01). To the best of our knowledge, this is the first study demonstrating that DBM dysbiosis is associated with the aGVHD risk after allo-HSCT.


Assuntos
Bactérias/crescimento & desenvolvimento , Doença Enxerto-Hospedeiro/microbiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Boca/microbiologia , Adulto , Idoso , Bactérias/genética , Disbiose , Feminino , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Ribotipagem , Medição de Risco , Fatores de Risco , Fatores de Tempo , Transplante Homólogo/efeitos adversos , Resultado do Tratamento , Adulto Jovem
4.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322618

RESUMO

Epidermal growth factor receptor antibodies (EGFR-Abs) confer a survival benefit in patients with RAS wild-type metastatic colorectal cancer (mCRC), but resistance invariably occurs. Previous data showed that only a minority of cancer cells harboured known genetic resistance drivers when clinical resistance to single-agent EGFR-Abs had evolved, supporting the activity of non-genetic resistance mechanisms. Here, we used error-corrected ctDNA-sequencing (ctDNA-Seq) of 40 cancer genes to identify drivers of resistance and whether a genetic resistance-gap (a lack of detectable genetic resistance mechanisms in a large fraction of the cancer cell population) also occurs in RAS wild-type mCRCs treated with a combination of EGFR-Abs and chemotherapy. We detected one MAP2K1/MEK1 mutation and one ERBB2 amplification in 2/3 patients with primary resistance and KRAS, NRAS, MAP2K1/MEK1 mutations and ERBB2 aberrations in 6/7 patients with acquired resistance. In vitro testing identified MAP2K1/MEK1 P124S as a novel driver of EGFR-Ab resistance. Mutation subclonality analyses confirmed a genetic resistance-gap in mCRCs treated with EGFR-Abs and chemotherapy, with only 13.42% of cancer cells harboring identifiable resistance drivers. Our results support the utility of ctDNA-Seq to guide treatment allocation for patients with resistance and the importance of investigating further non-canonical EGFR-Ab resistance mechanisms, such as microenvironmentally-mediated resistance. The detection of MAP2K1 mutations could inform trials of MEK-inhibitors in these tumours.

5.
Front Oncol ; 9: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967998

RESUMO

Background: Anti-EGFR antibodies are a standard care for advanced KRAS-wild type colorectal cancers. Circulating tumor DNA (ctDNA) monitoring during therapy can detect emergence of KRAS mutant clones and early resistance to therapy. Case Presentation: We describe a 61-years-old man presenting a metastatic and recurrent rectal cancer treated with different chemotherapy regimens. His tumor was KRAS wild-type based on tissue analysis and he was treated sequentially with cetuximab-based chemotherapy, chemotherapy alone and panitumumab-based chemotherapy. We performed sequential analysis of ctDNA using droplet digital PCR (ddPCR) and a commercial assay designed for the detection of frequent KRAS mutations during his clinical follow-up. Prior to the first cetuximab-based chemotherapy ctDNA analysis demonstrated an absence of KRAS mutations. Emergence of KRAS mutations in ctDNA occurred ~3 months after treatment initiation and preceded clinical and imaging progression in about 2 months. Fractional abundance of KRAS mutation rapidly increased to 70.7% immediately before a chemotherapy alone regimen was initiated. Interestingly, KRAS mutation abundance decreased significantly during the first two months of chemotherapy, reaching a fractional abundance of 3.0%, despite minimal clinical benefit with this therapy. Re-challenge with a different anti-EGFR antibody was attempted as later line, but high levels of KRAS mutations in ctDNA before therapy correlated with an absence of clinical benefit. Conclusions: The monitoring of resistance mutations in KRAS using ctDNA during the treatment of KRAS wild-type advanced colorectal cancers can detect the emergence of resistant clones prior to clinical progression. Dynamics of resistant clones may alter during periods on and off anti-EGFR antibodies, detecting window of opportunities for a re-challenge with these therapies.

6.
Lung Cancer ; 108: 238-241, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28625643

RESUMO

Osimertinib is an EGFR-T790M-specific TKI, which has demonstrated impressive response rates in NSCLC, after failure to first-line anti-EGFR TKIs. However, acquired resistance to osimertinib is also observed and the molecular mechanisms of resistance are not yet fully understood. Monitoring and managing NSCLC patients who progressed on osimertinib is, therefore, emerging as an important clinical challenge. Sequential liquid biopsies were used to monitor a patient with EGFR-exon19del positive NSCLC, who received erlotinib and progressed through the acquisition of the EGFR-T790M mutation. Erlotinib was discontinued and osimertinib was initiated. Blood samples were collected at erlotinib progression and during osimertinib treatment for the detection of the activating (EGFR-exon19del) and resistance mutations (EGFR-T790M, EGFR-C797S, BRAF-V600E, METamp and ERBB2amp) in the plasma DNA using digital droplet PCR. Plasma levels of the activating EGFR-exon19del accurately paralleled the clinical and radiological progression of disease and allowed early detection of AR to osimertinib. Resistance to osimertinib coincided with the emergence of a small tumor cell subpopulation carrying the known EGFR-C797S resistance mutation and an additional subpopulation carrying amplified copies of EGFR-exon19del. Given the existence of multiple AR mechanisms, quantification of the original EGFR activation mutation, instead of the resistance mutations, can be efficiently used to monitor response to osimertinib, allowing early detection of AR. Absolute quantification of both activation and resistance mutations can provide important information on tumor clonal evolution upon progression to osimertinib. Selective amplification of the EGFR-exon19del allele may represent a novel resistance mechanism to osimertinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Amplificação de Genes , Neoplasias Pulmonares/genética , Mutação , Piperazinas/farmacologia , Acrilamidas , Alelos , Compostos de Anilina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Progressão da Doença , Éxons , Feminino , Humanos , Biópsia Líquida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Tempo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA