Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36279778

RESUMO

Monoclonal antibodies (mAbs) are complex glycoproteins that are developed for treatment of various therapeutic indications such as cancer and autoimmune diseases. MAbs are glycosylated at conserved asparagine residues (N-X-S/T) of the Fc region at amino acid position 297 of the heavy chain. Glycans are important in governing the functions of efficacy and serum half-life of protein therapeutics and are part of the critical quality attribute panel for release testing. Traditionally, N-linked glycans are released from glycoproteins after denaturation and enzymatic digestion with PNGase F, followed by fluorescent labeling of the liberated glycans. The labeled glycans are then separated using hydrophilic liquid chromatography (HILIC) with fluorescence detection to generate chromatographic profile. Despite decades of use, this strenuous process remains unchanged, utilizing toxic reagents and extended sample preparation time. As an intervention, this report showcases a novel, label-free approach to detect and quantify N-glycans without using fluorescent labeling. Separation of glycans using mixed-mode PGC column along with detection of non-derivatized glycans using charged aerosol detector, the overall turnaround time can be greatly reduced with significant cost savings. The label-free method provides similar quantitative results as the conventional fluorescent labeled method, confirming the validity of the method for product release.


Assuntos
Glicoproteínas , Polissacarídeos , Polissacarídeos/análise , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Cromatografia Líquida/métodos , Glicoproteínas/química , Anticorpos Monoclonais/química , Aerossóis
2.
J Pharm Sci ; 110(7): 2651-2660, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812889

RESUMO

Size Exclusion Chromatography (SEC) has been widely used to assess aggregate content in bio-pharmaceutical drugs such as monoclonal antibodies (mAbs), and is routinely used during method development and release testing. Electrostatic interactions between protein analytes and SEC column resin are commonly observed besides the primary mode of size separation during SEC method development, which needs to be minimized. An effective method to minimize electrostatic interactions is through increasing mobile phase (MP) salt concentration. However; increasing salt concentration in MP will induce increased hydrophobicity of proteins and increased hydrophobic interactions between protein and stationary phase, as demonstrated for mAb-A in this paper, a protein with high surface aggregation propensity (SAP) score and an isoelectric point near mobile phase pH. In this work, a systematic, Design of Experimental approach was taken to identify optimal SEC method conditions including column type, buffer composition, ionic strength, pH and additives. The optimized method was demonstrated to be robust towards small changes in method operation conditions and was qualified for use in product release and stability studies. Additionally, biophysical and computational studies were performed to elucidate the role of MP additives, which supports the use of arginine as an essential additive to minimize undesirable hydrophobic interactions between proteins and stationary phase.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Cromatografia em Gel , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar
3.
Sci Rep ; 7(1): 5831, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724936

RESUMO

Ras is at the hub of signal transduction pathways controlling cell proliferation and survival. Its mutants, present in about 30% of human cancers, are major drivers of oncogenesis and render tumors unresponsive to standard therapies. Here we report the engineering of a protein scaffold for preferential binding to K-Ras G12D. This is the first reported inhibitor to achieve nanomolar affinity while exhibiting specificity for mutant over wild type (WT) K-Ras. Crystal structures of the protein R11.1.6 in complex with K-Ras WT and K-Ras G12D offer insight into the structural basis for specificity, highlighting differences in the switch I conformation as the major defining element in the higher affinity interaction. R11.1.6 directly blocks interaction with Raf and reduces signaling through the Raf/MEK/ERK pathway. Our results support greater consideration of the state of switch I and provide a novel tool to study Ras biology. Most importantly, this work makes an unprecedented contribution to Ras research in inhibitor development strategy by revealing details of a targetable binding surface. Unlike the polar interfaces found for Ras/effector interactions, the K-Ras/R11.1.6 complex reveals an extensive hydrophobic interface that can serve as a template to advance the development of high affinity, non-covalent inhibitors of K-Ras oncogenic mutants.


Assuntos
Engenharia de Proteínas , Proteínas Recombinantes/farmacologia , Proteínas ras/antagonistas & inibidores , Sequência de Aminoácidos , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas ras/metabolismo
4.
J Biol Chem ; 292(31): 12981-12993, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28630043

RESUMO

H-Ras, K-Ras, and N-Ras are small GTPases that are important in the control of cell proliferation, differentiation, and survival, and their mutants occur frequently in human cancers. The G-domain, which catalyzes GTP hydrolysis and mediates downstream signaling, is 95% conserved between the Ras isoforms. Because of their very high sequence identity, biochemical studies done on H-Ras have been considered representative of all three Ras proteins. We show here that this is not a valid assumption. Using enzyme kinetic assays under identical conditions, we observed clear differences between the three isoforms in intrinsic catalysis of GTP by Ras in the absence and presence of the Ras-binding domain (RBD) of the c-Raf kinase protein (Raf-RBD). Given their identical active sites, isoform G-domain differences must be allosteric in origin, due to remote isoform-specific residues that affect conformational states. We present the crystal structure of N-Ras bound to a GTP analogue and interpret the kinetic data in terms of structural features specific for H-, K-, and N-Ras.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Regulação Alostérica , Sítio Alostérico , Substituição de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Estabilidade Enzimática , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
J Biol Chem ; 290(52): 31025-36, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26515069

RESUMO

RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.


Assuntos
Guanosina Trifosfato/química , Nêutrons , Proteínas Proto-Oncogênicas p21(ras)/química , Catálise , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA