Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 431(19): 3718-3739, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31325442

RESUMO

Bacteriophages recognize their host cells with the help of tail fiber and tailspike proteins that bind, cleave, or modify certain structures on the cell surface. The spectrum of ligands to which the tail fibers and tailspikes can bind is the primary determinant of the host range. Bacteriophages with multiple tailspike/tail fibers are thought to have a wider host range than their less endowed relatives but the function of these proteins remains poorly understood. Here, we describe the structure, function, and substrate specificity of three tailspike proteins of bacteriophage CBA120-TSP2, TSP3 and TSP4 (orf211 through orf213, respectively). We show that tailspikes TSP2, TSP3 and TSP4 are hydrolases that digest the O157, O77, and O78 Escherichia coli O-antigens, respectively. We demonstrate that recognition of the E. coli O157:H7 host by CBA120 involves binding to and digesting the O157 O-antigen by TSP2. We report the crystal structure of TSP2 in complex with a repeating unit of the O157 O-antigen. We demonstrate that according to the specificity of its tailspikes TSP2, TSP3, and TSP4, CBA120 can infect E. coli O157, O77, and O78, respectively. We also show that CBA120 infects Salmonella enterica serovar Minnesota, and this host range expansion is likely due to the function of TSP1. Finally, we describe the assembly pathway and the architecture of the TSP1-TSP2-TSP3-TSP4 branched complex in CBA120 and its related ViI-like phages.


Assuntos
Bacteriófagos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Cristalografia por Raios X , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Especificidade de Hospedeiro , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Salmonella enterica/virologia , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato
2.
Vaccine ; 37(8): 1062-1072, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30670300

RESUMO

Shigellosis, a major cause of diarrhea worldwide, exhibits high morbidity and mortality in children. Specificity of Shigella immunity is determined by the structure of the main protective O-antigen polysaccharide component incorporated into the lipopolysaccharide (LPS) molecule. Endotoxicity, however, precludes LPS clinical use. Thus, there is still no vaccine against the most prevalent shigellosis species (serotype S. flexneri 2a), despite ongoing efforts focused on inducing serotype-specific immunity. As LPS is highly heterogenous, we hypothesized that more homogenous pools of LPS might be less toxic. We developed a method to generate a homogenous S. flexneri 2a LPS subfraction, Ac3-S-LPS, containing long chain O-specific polysaccharide (S-LPS) and mainly tri-acylated lipid A, with no penta- and hexa-acylated, and rare tetra-acylated lipid A. Ac3-S-LPS had dramatically reduced pyrogenicity and protected guinea pigs from shigellosis. In volunteers, 50 µg of injected Ac3-S-LPS vaccine was safe, with low pyrogenicity, no severe and few minor adverse events, and did not induce pro-inflammatory cytokines. In spite of the profound lipid A modification, the vaccine induced a prevalence of IgG and IgA antibodies. Thus, we have developed the first safe immunogenic LPS-based vaccine candidate for human administration. Homogenous underacetylated LPSs may also be useful for treating other LPS-driven human diseases. Clinical trial registry: http://grls.rosminzdrav.ru/.


Assuntos
Acilação/imunologia , Disenteria Bacilar/imunologia , Lipopolissacarídeos/imunologia , Vacinas contra Shigella/imunologia , Shigella flexneri/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Linhagem Celular Tumoral , Cobaias , Humanos , Antígenos O/imunologia , Células U937
3.
Artigo em Inglês | MEDLINE | ID: mdl-29535976

RESUMO

Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major component of their cell wall. Some natural differences between LPS variants in their ability to interact with TLR4 may lead to either insufficient activation that may not prevent bacterial growth, or excessive activation which may lead to septic shock. In this study we evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since such hypoacylation can result in a reduced immune response in humans, we assessed the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to activate TLR4-mediated proinflammatory cytokine and chemokine production, as well as NFκB-dependent reporter gene transcription. Our data support the hypothesis that LPS acylation correlates with its bioactivity.


Assuntos
Campylobacter jejuni/imunologia , Campylobacter jejuni/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/imunologia , Animais , Campylobacter jejuni/patogenicidade , Citocinas/metabolismo , Fator Regulador 3 de Interferon/genética , Interleucina-1beta/metabolismo , Interleucina-6 , Lipídeo A/imunologia , Lipídeo A/isolamento & purificação , Lipídeo A/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Carbohydr Res ; 448: 48-51, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28601025

RESUMO

An O-specific polysaccharide (OPS) was isolated from the lipopolysaccharide of Pseudomonas mediterranea strain C5P1rad1, the causal agents of tomato pith necrosis and Chrysanthemum stem rot, and studied by one- and two-dimensional 1H and 13C NMR spectroscopy. The following structure of the trisaccharide repeating unit of the OPS was established, which, to our knowledge, is unique among the known bacterial polysaccharide structures: →4)-ß-d-ManpNAc3NAcA-(1 â†’ 4)-ß-d-ManpNAc3NAcA-(1 â†’ 3)-α-d-QuipNAc4NAc-(1→ where QuiNAc4NAc and ManNAc3NAcA indicate 2,4-diacetamido-2,4,6-trideoxyglucose and 2,3-diacetamido-2,3-dideoxymannuronic acid, respectively. Pre-treatment of leaves with LPS or OPS preparations at 250 and 50 µg mL-1 did not inhibit development of a hypersensitivity reaction induced by P. mediterranea C5P1rad1 on tobacco, tomato and chrysanthemum plants. The same preparations at 250 µg mL-1 partially prevented elicitation of the hypersensitivity reaction by Pseudomonas syringae KVPT7RC on chrysanthemum but not tobacco and tomato.


Assuntos
Chrysanthemum/microbiologia , Antígenos O/química , Pseudomonas/química , Solanum lycopersicum/microbiologia , Sequência de Carboidratos , Pseudomonas/fisiologia
5.
Glycoconj J ; 34(1): 71-84, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27645300

RESUMO

Based on the O-specific polysaccharides of the lipopolysaccharides (O-polysaccharides, O-antigens), strains of a clonal species Escherichia coli are classified into 184 O serogroups. In this work, structures of the O-polysaccharides of E. coli O69 and O146 were elucidated and gene clusters for their biosynthesis were characterized. The O-polysaccharides were released from the lipopolysaccharides by mild acid hydrolysis and studied by sugar analysis and one- and two-dimensional 1H and 13C NMR spectroscopy before and after O-deacetylation. The O146 polysaccharide was also studied by Smith degradation. The O69 and O146 polysaccharides were found to contain ether conjugates of monosaccharides with lactic acid called glycolactilic acids: 2-acetamido-2-deoxy-4-O-[(R)-1-carboxyethyl]-D-glucose (D-GlcNAc4Rlac) and 3-O-[(S)-1-carboxyethyl]-D-glucose (D-Glc3Slac), respectively. Structures of the pentasaccharide repeats of the O-polysaccharides were established, and that of E. coli O69 was found to differ in the presence of D-GlcNAc4Rlac from the structure reported for this bacterium earlier (Erbing C, Kenne L, Lindberg B. 1977. Carbohydr Res. 56:371-376). The O-antigen gene clusters of E. coli O69 and O146 between conserved genes galF and gnd were analyzed taking into account the O-polysaccharide structures established, and functions of putative genes for synthesis of D-Glc3Slac and D-GlcNAc4Rlac and for glycosyltransferases were assigned based on homology with O-antigen biosynthesis genes of other enteric bacteria. It was found that in E. coli and Shigella spp. predicted enolpyruvate reductases of the biosynthesis pathway of glycolactilic acids, LarR and LarS, which catalyze formation of conjugates with (R)- or (S)-lactic acid, respectively, are distinguished by sequence homology and size.


Assuntos
Acetilglucosamina/análogos & derivados , Escherichia coli/química , Ácido Láctico/análogos & derivados , Lipopolissacarídeos/química , Acetilglucosamina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/análogos & derivados , Glucose/metabolismo , Glucosiltransferases/genética , Ácido Láctico/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética
6.
J Biol Chem ; 291(34): 17629-38, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27358401

RESUMO

LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-ß1,3]GalNAc-α1,3-GalNAc-ß1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2.


Assuntos
Bactérias Gram-Negativas/imunologia , Lectinas Tipo C/imunologia , Células Mieloides/imunologia , Antígenos O/imunologia , Animais , Células HEK293 , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Lectinas Tipo C/genética , Masculino , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
7.
Nat Immunol ; 16(4): 426-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25729922

RESUMO

The sensing of microbe-associated molecular patterns (MAMPs) triggers innate immunity in animals and plants. Lipopolysaccharide (LPS) from Gram-negative bacteria is a potent MAMP for mammals, with the lipid A moiety activating proinflammatory responses via Toll-like receptor 4 (TLR4). Here we found that the plant Arabidopsis thaliana specifically sensed LPS of Pseudomonas and Xanthomonas. We isolated LPS-insensitive mutants defective in the bulb-type lectin S-domain-1 receptor-like kinase LORE (SD1-29), which were hypersusceptible to infection with Pseudomonas syringae. Targeted chemical degradation of LPS from Pseudomonas species suggested that LORE detected mainly the lipid A moiety of LPS. LORE conferred sensitivity to LPS onto tobacco after transient expression, which demonstrated a key function in LPS sensing and indicated the possibility of engineering resistance to bacteria in crop species.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/imunologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Lipopolissacarídeos/farmacologia , Proteínas Serina-Treonina Quinases/genética , Pseudomonas syringae/química , Pseudomonas syringae/imunologia , Transdução de Sinais , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Transgenes , Xanthomonas campestris/química , Xanthomonas campestris/imunologia
8.
PLoS Pathog ; 8(5): e1002667, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570611

RESUMO

Capnocytophaga canimorsus is a usual member of dog's mouths flora that causes rare but dramatic human infections after dog bites. We determined the structure of C. canimorsus lipid A. The main features are that it is penta-acylated and composed of a "hybrid backbone" lacking the 4' phosphate and having a 1 phosphoethanolamine (P-Etn) at 2-amino-2-deoxy-d-glucose (GlcN). C. canimorsus LPS was 100 fold less endotoxic than Escherichia coli LPS. Surprisingly, C. canimorsus lipid A was 20,000 fold less endotoxic than the C. canimorsus lipid A-core. This represents the first example in which the core-oligosaccharide dramatically increases endotoxicity of a low endotoxic lipid A. The binding to human myeloid differentiation factor 2 (MD-2) was dramatically increased upon presence of the LPS core on the lipid A, explaining the difference in endotoxicity. Interaction of MD-2, cluster of differentiation antigen 14 (CD14) or LPS-binding protein (LBP) with the negative charge in the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) of the core might be needed to form the MD-2 - lipid A complex in case the 4' phosphate is not present.


Assuntos
Capnocytophaga/patogenicidade , Endotoxinas/química , Endotoxinas/metabolismo , Lipídeo A/química , Lipídeo A/metabolismo , Proteínas de Fase Aguda/metabolismo , Animais , Antígenos CD/metabolismo , Capnocytophaga/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Cães , Células HEK293 , Humanos , Interleucina-6/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Açúcares Ácidos/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
PLoS One ; 7(5): e35707, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563467

RESUMO

We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).


Assuntos
Aeromonas/metabolismo , Proteínas de Bactérias/metabolismo , Glucanos/metabolismo , Ligases/metabolismo , Uridina Difosfato Glucose/metabolismo , Aeromonas/genética , Aeromonas/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Sequência de Carboidratos , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Teste de Complementação Genética , Glucanos/química , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Humanos , Ligases/genética , Lipopolissacarídeos/metabolismo , Viabilidade Microbiana , Dados de Sequência Molecular , Mutação , Antígenos O/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
10.
J Infect Dis ; 200(11): 1694-702, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19863438

RESUMO

BACKGROUND: Yersinia pestis, the causative agent of plague, showed a temperature-dependent change in lipid A composition, with a reduced degree of acylation when bacteria were grown at 37 degrees C (tetraacylated) versus ambient temperature (hexaacylated). METHODS: Human monocytes and monocyte-derived dendritic cells (DCs) were exposed to Y. pestis grown at 26 degrees C or 37 degrees C, to their corresponding lipopolysaccharides (LPS-26 degrees C or LPS-37 degrees C), and to ligands of different Toll-like receptors (TLRs), such as LPS from Escherichia coli (TLR4), lipoprotein (TLR2), polyinosinic-polycytidylic acid (poly-IC) (TLR9), and their combinations. Production of cytokines was measured, along with expression of surface markers of DC maturation. RESULTS: Y. pestis grown at 37 degrees C or LPS-37 degrees C induced much lower production of cytokines (such as tumor necrosis factor alpha and interleukins 1beta, 10, and 12) by DCs than did Y. pestis grown at 26 degrees C or LPS-26 degrees C. Expression of the surface markers HLA-DR, CD86, and CD40 by DCs was also reduced in response to treatment with LPS-37 degrees C compared with LPS-26 degrees C. Pretreatment of DCs with LPS-37 degrees C inhibited subsequent stimulation with LPS-26 degrees C, control LPS from E. coli, lipoprotein, or poly-IC. CONCLUSIONS: LPS-37 degrees C can inhibit stimulation of DCs not only via TLR4 signaling but also via TLR2 and TLR3. [corrected]


Assuntos
Células Dendríticas/imunologia , Lipopolissacarídeos/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Yersinia pestis/imunologia , Acilação , Antígeno B7-2/metabolismo , Antígenos CD40/metabolismo , Células Cultivadas , Citocinas/biossíntese , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Escherichia coli/química , Antígenos HLA-DR/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Poli I-C/farmacologia , Transdução de Sinais , Temperatura , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Yersinia pestis/metabolismo
11.
Carbohydr Res ; 344(5): 683-6, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19185853

RESUMO

Recently, ether-linked diastereomeric 2,4-dihydroxypentanoic acids have been reported as new components of bacterial glycans [Shashkov, A. S. et al.Nat. Prod. Commun.2008, 3, 1625-1630]. In this work, an ether of (2R,4R)-2,4-dihydroxypentanoic acid (Dhpa) with d-mannose was identified in the O-polysaccharide of Providencia alcalifaciens O31, and the polysaccharide structure was elucidated. Studies by NMR spectroscopy confirmed the ether linkage between O-2 of Dhpa and O-4 of Man, and the absolute configuration of Man was determined after ether cleavage with boron trichloride. In the polysaccharide, Dhpa was found to exist partially in the form of 1,4-lactone. Using sugar and methylation analyses along with (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC, and gHMBC experiments, the following structure of the tetrasaccharide repeating unit of the polysaccharide was established: [carbohydrate structure: see text]


Assuntos
Lipopolissacarídeos/química , Manose/química , Ácidos Pentanoicos/química , Polissacarídeos Bacterianos/química , Providencia/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Molecular
12.
Mol Microbiol ; 70(6): 1358-67, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19019146

RESUMO

D-fucofuranose (D-Fucf) is a component of Escherichia coli O52 O antigen. This uncommon sugar is also the sugar moiety of the anticancer drug--gilvocarcin V produced by many streptomycetes. In E. coli O52, rmlA, rmlB, fcf1 and fcf2 were proposed in a previous study by our group to encode the enzymes of the dTDP-D-Fucf (the nucleotide-activated form of D-Fucf) biosynthetic pathway. In this study, Fcf1 and Fcf2 from E. coli O52 were expressed, purified and assayed for their respective activities. Novel product peaks from enzyme-substrate reactions were detected by capillary electrophoresis and the structures of the product compounds were elucidated by electro-spray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. Fcf1 was confirmed to be a dTDP-6-deoxy-D-xylo-hex-4-ulopyranose reductase for the conversion of dTDP-6-deoxy-D-xylo-hex-4-ulopyranose to dTDP-D-fucopyranose (dTDP-D-Fucp), and Fcf2 a dTDP-D-Fucp mutase for the conversion of dTDP-D-Fucp to dTDP-D-Fucf. The K(m) of Fcf1 for dTDP-6-deoxy-D-xylo-hex-4-ulopyranose was determined to be 0.38 mM, and of Fcf2 for dTDP-D-Fucp to be 3.43 mM. The functional role of fcf1 and fcf2 in the biosynthesis of E. coli O52 O antigen were confirmed by mutation and complementation tests. This is the first time that the biosynthetic pathway of dTDP-D-Fucf has been fully characterized.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Açúcares de Nucleosídeo Difosfato/biossíntese , Antígenos O/biossíntese , Clonagem Molecular , Escherichia coli/genética , Teste de Complementação Genética , Mutação , Antígenos O/genética , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
13.
Microbiology (Reading) ; 153(Pt 8): 2393-2404, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660404

RESUMO

A mutation in galU that causes the lack of O34-antigen lipopolysaccharide (LPS) in Aeromonas hydrophila strain AH-3 was identified. It was proved that A. hydrophila GalU is a UDP-glucose pyrophosphorylase responsible for synthesis of UDP-glucose from glucose 1-phosphate and UTP. The galU mutant from this strain showed two types of LPS structures, represented by two bands on LPS gels. The first one (slow-migrating band in gels) corresponds to a rough strain having the complete core, with two significant differences: it lacks the terminal galactose residue from the LPS-core and 4-amino-4-deoxyarabinose residues from phosphate groups in lipid A. The second one (fast-migrating band in gels) corresponds to a deeply truncated structure with the LPS-core restricted to one 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and three l-glycero-d-manno-heptose residues. galU mutants in several motile mesophilic Aeromonas strains from serotypes O1, O2, O11, O18, O21 and O44 were also devoid of the O-antigen LPS. The galU mutation reduced to less than 1 % the survival of these Aeromonas strains in serum, decreased the ability of these strains to adhere and reduced by 1.5 or 2 log units the virulence of Aeromonas serotype O34 strains in a septicaemia model in either fish or mice. All the changes observed in the galU mutants were rescued by the introduction of the corresponding single wild-type gene.


Assuntos
Aeromonas hydrophila/enzimologia , Aeromonas hydrophila/patogenicidade , Lipopolissacarídeos/química , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Aeromonas hydrophila/química , Aeromonas hydrophila/genética , Animais , Atividade Bactericida do Sangue , Sequência de Carboidratos , Adesão Celular/genética , Linhagem Celular Tumoral , DNA Bacteriano/química , DNA Bacteriano/genética , Doenças dos Peixes/microbiologia , Peixes , Teste de Complementação Genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Humanos , Dose Letal Mediana , Camundongos , Viabilidade Microbiana/genética , Dados de Sequência Molecular , Mutação , Antígenos O/biossíntese , Sepse/microbiologia , Análise de Sequência de DNA , UTP-Glucose-1-Fosfato Uridililtransferase/fisiologia , Virulência
14.
Carbohydr Res ; 340(9): 1612-7, 2005 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-15890320

RESUMO

An O-polysaccharide was isolated by mild acid hydrolysis from the lipopolysaccharide of Proteus mirabilis O40 and studied by NMR spectroscopy, including 2D 1H, 1H COSY, TOCSY, ROESY, and 1H, 13C HMQC experiments, along with chemical methods. The polysaccharide was found to contain an ether of GlcNAc with lactic acid and glycerol phosphate in the main chain and to have the following structure: --> 3)-beta-D-GlcpNAc4(R-Lac)-(1 --> 3)-alpha-D-Galp-(1 --> 3)-D-Gro-1-P-(O --> 3)-beta-D-GlcpNAc-(1 --> where D-GlcpNAc4(R-Lac) stands for 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose. This structure is unique among the known structures of the Proteus O-polysaccharides, which is in agreement with the classification of the strain studied into a separate O-serogroup. A serological relatedness of P. mirabilis O40 with some other Proteus strains was revealed and discussed in view of the O-polysaccharide structures.


Assuntos
Antígenos O/química , Polissacarídeos Bacterianos/química , Proteus mirabilis/classificação , Sequência de Carboidratos , Ácido Láctico/análise , Dados de Sequência Molecular , Monossacarídeos/análise , Antígenos O/imunologia , Antígenos O/isolamento & purificação , Éteres Fosfolipídicos/análise , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/isolamento & purificação , Proteus mirabilis/química , Proteus mirabilis/imunologia
15.
Carbohydr Res ; 339(3): 623-8, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15013399

RESUMO

Mild acid degradation of the lipopolysaccharide (LPS) of Proteus mirabilis O20 resulted in depolymerisation of the O-polysaccharide to give a repeating-unit pentasaccharide. A polysaccharide was obtained by O-deacylation of the LPS followed by nitrous acid deamination. The derived pentasaccharide and polysaccharide were studied by NMR spectroscopy, including 2D 1H,1H COSY, TOCSY, ROESY, 1H,13C HMQC and HMQC-TOSCY experiments, along with chemical methods, and the following structure of the repeating unit of the O-polysaccharide was established: [Carbohydrate structure: see text]. As opposite to most other P. mirabilis O-polysaccharides studied, that of P. mirabilis O20 is neutral. A week serological cross-reactivity was observed between anti-P. mirabilis O20 serum and LPS of a number of Proteus serogroups with known O-polysaccharide structure. The ability of LPS of P. mirabilis O20 to activate the serine protease cascade was tested in Limulus amoebocyte lysate and in human blood plasma and compared with that of P. mirabilis O14a,14c having an acidic O-polysaccharide. The LPS of P. mirabilis O20 was found to be less active in both assays than the LPS of P. mirabilis O14a,14c and, therefore, the structurally variable O-polysaccharide may influenced the biological activity of the conserved lipid A moiety of the LPS.


Assuntos
Antígenos O/química , Antígenos O/farmacologia , Proteus mirabilis/química , Animais , Sequência de Carboidratos , Extratos Celulares , Caranguejos Ferradura/enzimologia , Humanos , Soros Imunes/imunologia , Técnicas Imunoenzimáticas , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Antígenos O/imunologia , Proteus mirabilis/classificação , Coelhos , Serina Endopeptidases/sangue , Serina Endopeptidases/metabolismo
16.
J Biol Chem ; 279(20): 21046-54, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-14766898

RESUMO

The facultative intracellular pathogen Bartonella henselae is responsible for a broad range of clinical manifestations, including the formation of vascular tumors as a result of increased proliferation and survival of colonized endothelial cells. This remarkable interaction with endotoxin-sensitive endothelial cells and the apparent lack of septic shock are considered to be due to a reduced endotoxic activity of the B. henselae lipopolysaccharide. Here, we show that B. henselae ATCC 49882(T) produces a deep-rough-type lipopolysaccharide devoid of O-chain and report on its complete structure and Toll-like receptor-dependent biological activity. The major short-chain lipopolysaccharide was studied by chemical analyses, electrospray ionization, and matrix-assisted laser desorption/ionization mass spectrometry, as well as by NMR spectroscopy after alkaline deacylation. The carbohydrate portion of the lipopolysaccharide consists of a branched trisaccharide containing a glucose residue attached to position 5 of an alpha-(2-->4)-linked 3-deoxy-d-manno-oct-2-ulosonic acid disaccharide. Lipid A is a pentaacylated beta-(1'-->6)-linked 2,3-diamino-2,3-dideoxy-glucose disaccharide 1,4'-bisphosphate with two amide-linked residues each of 3-hydroxydodecanoic and 3-hydroxyhexadecanoic acids and one residue of either 25-hydroxyhexacosanoic or 27-hydroxyoctacosanoic acid that is O-linked to the acyl group at position 2'. The lipopolysaccharide studied activated Toll-like receptor 4 signaling only to a low extent (1,000-10,000-fold lower compared with that of Salmonella enterica sv. Friedenau) and did not activate Toll-like receptor 2. Some unusual structural features of the B. henselae lipopolysaccharide, including the presence of a long-chain fatty acid, which are shared by the lipopolysaccharides of other bacteria causing chronic intracellular infections (e.g. Legionella and Chlamydia), may provide the molecular basis for low endotoxic potency.


Assuntos
Bartonella henselae/química , Lipopolissacarídeos/química , Infecções por Bartonella , Bartonella henselae/imunologia , Bartonella henselae/isolamento & purificação , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/metabolismo , Metilação , Dados de Sequência Molecular , Espectrometria de Massas por Ionização por Electrospray , Transfecção
17.
J Biol Chem ; 277(8): 5785-95, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11741906

RESUMO

Helicobacter pylori is an important gastroduodenal pathogen of humans whose survival in the gastric environment below pH 4 is dependent on bacterial production of urease, whereas above pH 4 urease-independent mechanisms are involved in survival, but that remain to be elucidated fully. Previous structural investigations on the lipopolysaccharides (LPSs) of H. pylori have shown that the majority of these surface glycolipids express partially fucosylated, glucosylated, or galactosylated N-acetyllactosamine (LacNAc) O-polysaccharide chains containing Lewis(x) (Le(x)) and/or Lewis(y) (Le(y)), although some strains also express type 1 determinants, Lewis(a), Lewis(b), and H-1 antigen. In this study, we investigated acid-induced changes in the structure and composition of LPS and cellular lipids of the genome-sequenced strain, H. pylori 26695. When grown in liquid medium at pH 7, the O-chain consisted of a type 2 LacNAc polysaccharide, which was glycosylated with alpha-1-fucose at O-3 of the majority of N-acetylglucosamine residues forming Le(x) units, including chain termination by a Le(x) unit. However, growth in liquid medium at pH 5 resulted in production of a more complex O-chain whose backbone of type 2 LacNAc units was partially glycosylated with alpha L-fucose, thus forming Le(x), whereas the majority of the nonfucosylated N-acetylglucosamine residues were substituted at O-6 by alpha-D-galactose residues, and the chain was terminated by a Le(y) unit. In contrast, detailed chemical analysis of the core and lipid A components of LPS and analysis of cellular lipids did not show significant differences between H. pylori 26695 grown at pH 5 and 7. Although putative molecular mechanisms affecting Le(x) and Le(y) expression have been investigated previously, this is the first report identifying an environmental trigger inducing phase variation of Le(x) and Le(y) in H. pylori that can aid adaptation of the bacterium to its ecological niche.


Assuntos
Mucosa Gástrica/química , Variação Genética , Glicolipídeos/química , Antígenos do Grupo Sanguíneo de Lewis/genética , Antígenos CD15/genética , Lipopolissacarídeos/química , Mimetismo Molecular/genética , Configuração de Carboidratos , Sequência de Carboidratos , Células Epiteliais/química , Helicobacter pylori , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Fenótipo , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA