Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Br J Radiol ; 93(1107): 20190494, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31687835

RESUMO

Clinical parameters and empirical evidence are the primary determinants for current treatment planning in radiation oncology. Personalized medicine in radiation oncology is only at the very beginning to take the genetic background of a tumor entity into consideration to define an individual treatment regimen, the total dose or the combination with a specific anticancer agent. Likewise, stratification of patients towards proton radiotherapy is linked to its physical advantageous energy deposition at the tumor site with minimal healthy tissue being co-irradiated distal to the target volume. Hence, the fact that photon and proton irradiation also induce different qualities of DNA damages, which require differential DNA damage repair mechanisms has been completely neglected so far. These subtle differences could be efficiently exploited in a personalized treatment approach and could be integrated into personalized treatment planning. A differential requirement of the two major DNA double-strand break repair pathways, homologous recombination and non-homologous end joining, was recently identified in response to proton and photon irradiation, respectively, and subsequently influence the mode of ionizing radiation-induced cell death and susceptibility of tumor cells with defects in DNA repair machineries to either quality of ionizing radiation.This review focuses on the differential DNA-damage responses and subsequent biological processes induced by photon and proton irradiation in dependence of the genetic background and discusses their impact on the unicellular level and in the tumor microenvironment and their implications for combined treatment modalities.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Fótons/uso terapêutico , Medicina de Precisão , Terapia com Prótons , Eficiência Biológica Relativa , Absorção de Radiação , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral/efeitos da radiação , Terapia Combinada , Reparo do DNA por Junção de Extremidades , Humanos , Transferência Linear de Energia , Neoplasias/genética , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Tolerância a Radiação/genética , Radiação Ionizante , Microambiente Tumoral
3.
Sci Rep ; 7: 41962, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181505

RESUMO

The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4+ and CD8+ T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies.


Assuntos
Linfoma de Células T/genética , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Linfócitos T/imunologia , Animais , Morte Celular , Células Cultivadas , Dano ao DNA , Linfoma de Células T/imunologia , Linfoma de Células T/patologia , Camundongos , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerases/deficiência
4.
Nat Commun ; 6: 7676, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26158450

RESUMO

CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.


Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Nanismo/genética , Recombinação Homóloga/genética , Meiose/genética , Microcefalia/genética , Espermatócitos/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Dano ao DNA , Fácies , Imuno-Histoquímica , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética/genética , Contagem de Espermatozoides , Espermatócitos/patologia
5.
J Biol Chem ; 289(50): 34838-50, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25359778

RESUMO

USP28 (ubiquitin-specific protease 28) is a deubiquitinating enzyme that has been implicated in the DNA damage response, the regulation of Myc signaling, and cancer progression. The half-life stability of major regulators of critical cellular pathways depends on the activities of specific ubiquitin E3 ligases that target them for proteosomal degradation and deubiquitinating enzymes that promote their stabilization. One function of the post-translational small ubiquitin modifier (SUMO) is the regulation of enzymatic activity of protein targets. In this work, we demonstrate that the SUMO modification of the N-terminal domain of USP28 negatively regulates its deubiquitinating activity, revealing a role for the N-terminal region as a regulatory module in the control of USP28 activity. Despite the presence of ubiquitin-binding domains in the N-terminal domain, its truncation does not impair deubiquitinating activity on diubiquitin or polyubiquitin chain substrates. In contrast to other characterized USP deubiquitinases, our results indicate that USP28 has a chain preference activity for Lys(11), Lys(48), and Lys(63) diubiquitin linkages.


Assuntos
Proteína SUMO-1/metabolismo , Sumoilação , Ubiquitina Tiolesterase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Especificidade por Substrato , Ubiquitina Tiolesterase/química
6.
Mol Oncol ; 8(8): 1747-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25113059

RESUMO

REV3, the catalytic subunit of translesion polymerase zeta (polζ), is commonly associated with DNA damage bypass and repair. Despite sharing accessory subunits with replicative polymerase δ, very little is known about the role of polζ in DNA replication. We previously demonstrated that inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. To reveal determinants of this sensitivity and obtain insights into the cellular function of REV3, we performed whole human genome RNAi library screens aimed at identification of synthetic lethal interactions with REV3 in A549 lung cancer cells. The top confirmed hit was RRM1, the large subunit of ribonucleotide reductase (RNR), a critical enzyme of de novo nucleotide synthesis. Treatment with the RNR-inhibitor hydroxyurea (HU) synergistically increased the fraction of REV3-deficient cells containing single stranded DNA (ssDNA) as indicated by an increase in replication protein A (RPA). However, this increase was not accompanied by accumulation of the DNA damage marker γH2AX suggesting a role of REV3 in counteracting HU-induced replication stress (RS). Consistent with a role of REV3 in DNA replication, increased RPA staining was confined to HU-treated S-phase cells. Additionally, we found genes related to RS to be significantly enriched among the top hits of the synthetic sickness/lethality (SSL) screen further corroborating the importance of REV3 for DNA replication under conditions of RS.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Citometria de Fluxo , Humanos , Interferência de RNA/fisiologia , Ribonucleosídeo Difosfato Redutase , Proteínas Supressoras de Tumor/genética
7.
Mol Cell Biol ; 34(11): 2062-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687851

RESUMO

The DNA damage response (DDR) is critical for genome stability and the suppression of a wide variety of human malignancies, including neurodevelopmental disorders, immunodeficiency, and cancer. In addition, the efficacy of many chemotherapeutic strategies is dictated by the status of the DDR. Ubiquitin-specific protease 28 (USP28) was reported to govern the stability of multiple factors that are critical for diverse aspects of the DDR. Here, we examined the effects of USP28 depletion on the DDR in cells and in vivo. We found that USP28 is recruited to double-strand breaks in a manner that requires the tandem BRCT domains of the DDR protein 53BP1. However, we observed only minor DDR defects in USP28-depleted cells, and mice lacking USP28 showed normal longevity, immunological development, and radiation responses. Our results thus indicate that USP28 is not a critical factor in double-strand break metabolism and is unlikely to be an attractive target for therapeutic intervention aimed at chemotherapy sensitization.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/citologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA , Instabilidade Genômica , Células HEK293 , Humanos , Switching de Imunoglobulina/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Pontos de Checagem da Fase S do Ciclo Celular/genética , Transdução de Sinais/genética , Timócitos/imunologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina Tiolesterase/genética
8.
Front Genet ; 4: 37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23532176

RESUMO

The DNA damage response (DDR) rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence (Jackson and Bartek, 2009). DNA double-strand breaks (DSBs) represent one of the most cytotoxic DNA lesions and defects in their metabolism underlie many human hereditary diseases characterized by genomic instability (Stracker and Petrini, 2011; McKinnon, 2012). Patients with hereditary defects in the DDR display defects in development, particularly affecting the central nervous system, the immune system and the germline, as well as aberrant metabolic regulation and cancer predisposition. Central to the DDR to DSBs is the ataxia-telangiectasia mutated (ATM) kinase, a master controller of signal transduction. Understanding how ATM signaling regulates various aspects of the DDR and its roles in vivo is critical for our understanding of human disease, its diagnosis and its treatment. This review will describe the general roles of ATM signaling and highlight some recent advances that have shed light on the diverse roles of ATM and related proteins in human disease.

9.
Cancer Cell Int ; 11: 39, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22047021

RESUMO

During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability.We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy.

10.
Neoplasia ; 13(10): 961-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028621

RESUMO

REV3 is the catalytic subunit of DNA translesion synthesis polymerase ζ. Inhibition of REV3 expression increases the sensitivity of human cells to a variety of DNA-damaging agents and reduces the formation of resistant cells. Surprisingly, we found that short hairpin RNA-mediated depletion of REV3 per se suppresses colony formation of lung (A549, Calu-3), breast (MCF-7, MDA-MB-231), mesothelioma (IL45 and ZL55), and colon (HCT116 +/-p53) tumor cell lines, whereas control cell lines (AD293, LP9-hTERT) and the normal mesothelial primary culture (SDM104) are less affected. Inhibition of REV3 expression in cancer cells leads to an accumulation of persistent DNA damage as indicated by an increase in phospho-ATM, 53BP1, and phospho-H2AX foci formation, subsequently leading to the activation of the ATM-dependent DNA damage response cascade. REV3 depletion in p53-proficient cancer cell lines results in a G(1) arrest and induction of senescence as indicated by the accumulation of p21 and an increase in senescence-associated ß-galactosidase activity. In contrast, inhibition of REV3 expression in p53-deficient cells results in growth inhibition and a G(2)/M arrest. A small fraction of the p53-deficient cancer cells can overcome the G(2)/M arrest, which results in mitotic slippage and aneuploidy. Our findings reveal that REV3 depletion per se suppresses growth of cancer cell lines from different origin, whereas control cell lines and a mesothelial primary culture were less affected. Thus, our findings indicate that depletion of REV3 not only can amend cisplatin-based cancer therapy but also can be applied for susceptible cancers as a potential monotherapy.


Assuntos
Proliferação de Células , Dano ao DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Interferência de RNA , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Senescência Celular , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Fase G2 , Instabilidade Genômica , Células HCT116 , Células HEK293 , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microscopia de Fluorescência , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA