Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 33(11): 1369-74, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25613719

RESUMO

Vaccine adjuvants are classified according to their properties of either inducing the persistence of antigens within the animal after immunisation and/or activation of the animal's immune response. The adjuvant effect of low intensity low frequency sonophoresis (LFS) was tested in rainbow trout using an Aeromonas salmonicida bacterin vaccine administered by immersion vaccination using LFS at 37 kHz. The adjuvant effect obtained with LFS was compared with that of normal immersion or intraperitoneal injection vaccination. Quantitative PCR was used to measure bacterial DNA in vaccinated fish up to 35 days post-vaccination, while RT-qPCR was used to assess gene expression during the early and late immune response post-vaccination. Results showed that antigen uptake in the gills was significantly higher in the group exposed to low intensity LFS compared to the other two vaccination groups 15 min post-vaccination, but this initially high uptake did not persist over the rest of the experiment. In the kidney, by comparison, the vast majority of the samples analysed did not show the presence or persistence of the bacterin. Showing that the route of vaccine uptake using the A. salmonicida bacterin, does not influence the persistence of the bacterin in the gills or the kidney. On the other hand, LFS induced a higher inflammatory response and T-helper cell activation, characterized by a significant up-regulation of interleukin-8 (IL-8), IL-1ß and CD-4, respectively. The expression of Ig-M, Ig-T and Ig-D was up-regulated in gills (being significant for Ig-M), but not in the spleen and kidney of the sonicated group. Conversely, Ig-M was up-regulated in the spleen of the non-sonicated groups, but not in the sonicated group. This highlights the ability of ultrasound to enhance mucosal immunity. It remains to be established whether the up-regulation of Ig-M in gills would be sufficient to offer protection in fish infected with A. salmonicida.


Assuntos
Adjuvantes Imunológicos , Aeromonas salmonicida/imunologia , Vacinas Bacterianas/imunologia , Doenças dos Peixes/prevenção & controle , Furunculose/prevenção & controle , Oncorhynchus mykiss/imunologia , Ondas Ultrassônicas , Animais , DNA Bacteriano , Proteínas de Peixes , Expressão Gênica , Brânquias/imunologia , Imersão , Imunoglobulina D/genética , Imunoglobulina M/genética , Imunoglobulinas/genética , Injeções Intraperitoneais , Interleucina-8/genética , Interleucina-8/imunologia , Rim , Reação em Cadeia da Polimerase em Tempo Real , Baço/imunologia , Vacinação , Vacinas de Produtos Inativados/imunologia
2.
Parasit Vectors ; 7: 504, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403767

RESUMO

BACKGROUND: The invasive eel parasite Anguillicoloides crassus (syn. Anguillicola crassus) is considered one of the major causes for the decline of the European eel (Anguilla anguilla) panmictic population. It impairs the swim bladder function and reduces swimming performance of its host. The life cycle of this parasite involves different intermediate and paratenic hosts. Despite an efficient immune system of the paratenic fish hosts acting against infections with A. crassus, levels of parasitized eels remain high in European river systems. Recently, the round goby Neogobius melanostomus (Gobiidae) has become dominant in many rivers in Europe and is still spreading at a rapid pace. This highly invasive species might potentially act as an important, so far neglected paratenic fish host for A. crassus. METHODS: Based on own observations and earlier single sightings of A. crassus in N. melanostomus, 60 fresh individuals of N. melanostomus were caught in the Rhine River and examined to assess the infection levels with metazoan parasites, especially A. crassus. Glycerin preparations were used for parasite identification. RESULTS: The parasite most frequently found in N. melanostomus was the acanthocephalan Pomphorhynchus sp. (subadult stage) which occurred mainly encysted in the mesenteries and liver. Every third gobiid (P = 31.7%) was infected by A. crassus larvae (L3) which exclusively occurred inside the acanthocephalan cysts. No intact or degenerated larvae of A. crassus were detected elsewhere in the goby, neither in the body cavity and mesenteries nor in other organs. Affected cysts contained the acanthocephalan larvae and 1-12 (mI =3) living A. crassus larvae. Additionally, encysted larvae of the nematode Raphidascaris acus were detected in the gobies, but only in the body cavity and not inside the acanthocephalan cysts. CONCLUSIONS: Based on our observations, we suggest that A. crassus might actively bypass the immune response of N. melanostomus by invading the cysts of acanthocephalan parasites of the genus Pomphorhynchus using them as "Trojan horses". Providing that eels prey on the highly abundant round goby and that the latter transfers viable infective larvae of A. crassus, the new paratenic host might have a strong impact on the epidemiology of A. crassus.


Assuntos
Enguias/parasitologia , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Nematoides/crescimento & desenvolvimento , Infecções por Nematoides/veterinária , Animais , Estágios do Ciclo de Vida , Nematoides/fisiologia , Infecções por Nematoides/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA