Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
ACS Chem Biol ; 16(4): 712-723, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33765766

RESUMO

Differential expression of extracellular proteases and endogenous protease inhibitors has been associated with distinct molecular subtypes of breast cancer. However, due to the tight post-translational regulation of protease activity, protease expression-level data alone are not sufficient to understand the role of proteases in malignant transformation. Therefore, we hypothesized that global profiles of extracellular protease activity could more completely reflect differences observed at the transcriptional level in breast cancer and that subtype-associated protease activity may be leveraged to identify specific proteases that play a functional role in cancer signaling. Here, we used a global peptide library-based approach to profile the activities of proteases within distinct breast cancer subtypes. Analysis of 3651 total peptide cleavages from a panel of well-characterized breast cancer cell lines demonstrated differences in proteolytic signatures between cell lines. Cell line clustering based on protease cleavages within the peptide library expanded upon the expected classification derived from transcriptional profiling. An isogenic cell line model developed to further interrogate proteolysis in the HER2 subtype revealed a proteolytic signature consistent with activation of TGF-ß signaling. Specifically, we determined that a metalloprotease involved in TGF-ß signaling, BMP1, was upregulated at both the protein (2-fold, P = 0.001) and activity (P = 0.0599) levels. Inhibition of BMP1 and HER2 suppressed invasion of HER2-expressing cells by 35% (P < 0.0001), compared to 15% (P = 0.0086) observed in cells where only HER2 was inhibited. In summary, through global identification of extracellular proteolysis in breast cancer cell lines, we demonstrate subtype-specific differences in protease activity and elucidate proteolysis associated with HER2-mediated signaling.


Assuntos
Neoplasias da Mama/metabolismo , Genes erbB-2 , Peptídeo Hidrolases/metabolismo , Neoplasias da Mama/genética , Transformação Celular Neoplásica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteólise
2.
Biol Chem ; 400(12): 1629-1638, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31256057

RESUMO

Incidental detection of pancreatic cysts has increased dramatically over the last decade, but risk stratification and clinical management remain a challenge. Mucinous cysts are precursor lesions to pancreatic cancer, however, the majority are indolent. Current diagnostics cannot identify mucinous cysts that harbor cancer or reliably differentiate these lesions from nonmucinous cysts, which present minimal risk of malignant progression. We previously determined that activity of two aspartyl proteases was increased in mucinous cysts. Using a global protease activity profiling technology, termed multiplex substrate profiling by mass spectrometry (MSP-MS), we now show that aminopeptidase activity is also elevated in mucinous cysts. The serine aminopeptidase, tripeptidyl peptidase 1 (TPP1), was detected by proteomic analysis of cyst fluid samples and quantitation using targeted MS demonstrated that this protease was significantly more abundant in mucinous cysts. In a cohort of 110 cyst fluid samples, TPP1 activity was increased more than 3-fold in mucinous cysts relative to nonmucinous cysts. Moreover, TPP1 activity is primarily associated with mucinous cysts that harbor high-grade dysplasia or invasive carcinoma. Although only 59% accurate for differentiating these lesions, measurement of TPP1 activity may improve early detection and treatment of high-risk pancreatic cysts when used in conjunction with other promising biomarkers.


Assuntos
Aminopeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Lisossomos/enzimologia , Cisto Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Serina Proteases/metabolismo , Humanos , Lisossomos/metabolismo , Cisto Pancreático/patologia , Neoplasias Pancreáticas/patologia , Proteômica , Tripeptidil-Peptidase 1
3.
Neurology ; 93(5): e433-e444, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31270218

RESUMO

OBJECTIVE: To identify molecular correlates of primary angiitis of the CNS (PACNS) through proteomic analysis of CSF from a biopsy-proven patient cohort. METHODS: Using mass spectrometry, we quantitatively compared the CSF proteome of patients with biopsy-proven PACNS (n = 8) to CSF from individuals with noninflammatory conditions (n = 11). Significantly enriched molecular pathways were identified with a gene ontology workflow, and high confidence hits within enriched pathways (fold change >1.5 and concordant Benjamini-Hochberg-adjusted p < 0.05 on DeSeq and t test) were identified as differentially regulated proteins. RESULTS: Compared to noninflammatory controls, 283 proteins were differentially expressed in the CSF of patients with PACNS, with significant enrichment of the complement cascade pathway (C4-binding protein, CD55, CD59, properdin, complement C5, complement C8, and complement C9) and neural cell adhesion molecules. A subset of clinically relevant findings were validated by Western blot and commercial ELISA. CONCLUSIONS: In this exploratory study, we found evidence of deregulation of the alternative complement cascade in CSF from biopsy-proven PACNS compared to noninflammatory controls. More specifically, several regulators of the C3 and C5 convertases and components of the terminal cascade were significantly altered. These preliminary findings shed light on a previously unappreciated similarity between PACNS and systemic vasculitides, especially anti-neutrophil cytoplasmic antibody-associated vasculitis. The therapeutic implications of this common biology and the diagnostic and therapeutic utility of individual proteomic findings warrant validation in larger cohorts.


Assuntos
Proteínas do Sistema Complemento/líquido cefalorraquidiano , Moléculas de Adesão de Célula Nervosa/líquido cefalorraquidiano , Proteômica , Vasculite do Sistema Nervoso Central/líquido cefalorraquidiano , Adolescente , Adulto , Biópsia , Encéfalo/patologia , Antígenos CD55/líquido cefalorraquidiano , Antígenos CD59/líquido cefalorraquidiano , Estudos de Casos e Controles , Estudos de Coortes , Proteína de Ligação ao Complemento C4b/líquido cefalorraquidiano , Complemento C5/líquido cefalorraquidiano , Complemento C8/líquido cefalorraquidiano , Complemento C9/líquido cefalorraquidiano , Via Alternativa do Complemento , Feminino , Ontologia Genética , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Properdina/líquido cefalorraquidiano , Vasculite do Sistema Nervoso Central/patologia
4.
J Proteome Res ; 18(5): 2078-2087, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30964683

RESUMO

Purines represent a class of essential metabolites produced by the cell to maintain cellular homeostasis and facilitate cell proliferation. In times of high purine demand, the de novo purine biosynthetic pathway is activated; however, the mechanisms that facilitate this process are largely unknown. One plausible mechanism is through intracellular signaling, which results in enzymes within the pathway becoming post-translationally modified to enhance their individual enzyme activities and the overall pathway metabolic flux. Here, we employ a proteomic strategy to investigate the extent to which de novo purine biosynthetic pathway enzymes are post-translationally modified in 293T cells. We identified 7 post-translational modifications on 135 residues across the 6 human pathway enzymes. We further asked whether there were differences in the post-translational modification state of each pathway enzyme isolated from cells cultured in the presence or absence of purines. Of the 174 assigned modifications, 67% of them were only detected in one experimental growth condition in which a significant number of serine and threonine phosphorylations were noted. A survey of the most-probable kinases responsible for these phosphorylation events uncovered a likely AKT phosphorylation site at residue Thr397 of PPAT, which was only detected in cells under purine-supplemented growth conditions. These data suggest that this modification might alter enzyme activity or modulate its interaction(s) with downstream pathway enzymes. Together, these findings propose a role for post-translational modifications in pathway regulation and activation to meet intracellular purine demand.


Assuntos
Amidofosforribosiltransferase/metabolismo , Mapeamento de Peptídeos/métodos , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/metabolismo , Acetilação , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Amidofosforribosiltransferase/genética , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peptídeos/síntese química , Peptídeos/metabolismo , Fosforribosilglicinamido Formiltransferase/genética , Fosforribosilglicinamido Formiltransferase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo , Ubiquitinação
5.
Protein Sci ; 27(3): 584-594, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29168252

RESUMO

Enzymes that modify the proteome, referred to as post-translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes. In this article, we highlight various peptide-based approaches for analysis of PTM enzyme substrate specificity. We focus on the application of these technologies to proteases and also discuss specific examples in which they have been used to uncover the substrate specificity of other types of PTM enzymes, such as kinases. In particular, we highlight our multiplex substrate profiling by mass spectrometry (MSP-MS) assay, which uses a rationally designed, physicochemically diverse library of tetradecapeptides. We show how this method has been applied to PTM enzymes to uncover biological function, and guide substrate and inhibitor design. We also briefly discuss how this technique can be combined with other methods to gain a systems-level understanding of PTM enzyme regulation and function.


Assuntos
Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Humanos , Espectrometria de Massas , Peptídeo Hidrolases/química , Biblioteca de Peptídeos , Peptídeos/química , Especificidade por Substrato
6.
Elife ; 52016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874833

RESUMO

Natural Killer (NK) cells are essential for control of viral infection and cancer. NK cells express NKG2D, an activating receptor that directly recognizes NKG2D ligands. These are expressed at low level on healthy cells, but are induced by stresses like infection and transformation. The physiological events that drive NKG2D ligand expression during infection are still poorly understood. We observed that the mouse cytomegalovirus encoded protein m18 is necessary and sufficient to drive expression of the RAE-1 family of NKG2D ligands. We demonstrate that RAE-1 is transcriptionally repressed by histone deacetylase inhibitor 3 (HDAC3) in healthy cells, and m18 relieves this repression by directly interacting with Casein Kinase II and preventing it from activating HDAC3. Accordingly, we found that HDAC inhibiting proteins from human herpesviruses induce human NKG2D ligand ULBP-1. Thus our findings indicate that virally mediated HDAC inhibition can act as a signal for the host to activate NK-cell recognition.


Assuntos
Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Interações Hospedeiro-Patógeno , Muromegalovirus/fisiologia , Animais , Humanos , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Proteínas Associadas à Matriz Nuclear , Proteínas de Transporte Nucleocitoplasmático
7.
Nat Protoc ; 9(11): 2539-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25275790

RESUMO

By determining protein-protein interactions in normal, diseased and infected cells, we can improve our understanding of cellular systems and their reaction to various perturbations. In this protocol, we discuss how to use data obtained in affinity purification-mass spectrometry (AP-MS) experiments to generate meaningful interaction networks and effective figures. We begin with an overview of common epitope tagging, expression and AP practices, followed by liquid chromatography-MS (LC-MS) data collection. We then provide a detailed procedure covering a pipeline approach to (i) pre-processing the data by filtering against contaminant lists such as the Contaminant Repository for Affinity Purification (CRAPome) and normalization using the spectral index (SIN) or normalized spectral abundance factor (NSAF); (ii) scoring via methods such as MiST, SAInt and CompPASS; and (iii) testing the resulting scores. Data formats familiar to MS practitioners are then transformed to those most useful for network-based analyses. The protocol also explores methods available in Cytoscape to visualize and analyze these types of interaction data. The scoring pipeline can take anywhere from 1 d to 1 week, depending on one's familiarity with the tools and data peculiarities. Similarly, the network analysis and visualization protocol in Cytoscape takes 2-4 h to complete with the provided sample data, but we recommend taking days or even weeks to explore one's data and find the right questions.


Assuntos
Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Trifosfato de Adenosina/metabolismo , Cromatografia Líquida , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteômica/métodos , Software , Proteínas Virais Reguladoras e Acessórias/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo
8.
J Nat Prod ; 76(4): 630-41, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23445522

RESUMO

Almiramide C is a marine natural product with low micromolar activity against Leishmania donovani, the causative agent of leishmaniasis. We have now shown that almiramide C is also active against the related parasite Trypanosoma brucei, the causative agent of human African trypanosomiasis. A series of activity-based probes have been synthesized to explore both the molecular target of this compound series in T. brucei lysates and site localization through epifluorescence microscopy. These target identification studies indicate that the almiramides likely perturb glycosomal function through disruption of membrane assembly machinery. Glycosomes, which are organelles specific to kinetoplastid parasites, house the first seven steps of glycolysis and have been shown to be essential for parasite survival in the bloodstream stage. There are currently no reported small-molecule disruptors of glycosome function, making the almiramides unique molecular probes for this understudied parasite-specific organelle. Additionally, examination of toxicity in an in vivo zebrafish model has shown that these compounds have little effect on organism development, even at high concentrations, and has uncovered a potential side effect through localization of fluorescent derivatives to zebrafish neuromast cells. Combined, these results further our understanding of the potential value of this lead series as development candidates against T. brucei.


Assuntos
Produtos Biológicos/farmacologia , Doença de Chagas/tratamento farmacológico , Lipopeptídeos/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Produtos Biológicos/química , Glicólise/fisiologia , Humanos , Leishmania donovani/efeitos dos fármacos , Microcorpos/metabolismo , Microscopia de Fluorescência , Trypanosoma brucei brucei/metabolismo , Peixe-Zebra/fisiologia
9.
J Biol Chem ; 288(18): 12489-99, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23504313

RESUMO

The transmembrane serine protease MarP is important for pH homeostasis in Mycobacterium tuberculosis (Mtb). Previous structural studies revealed that MarP contains a chymotrypsin fold and a disulfide bond that stabilizes the protease active site in the substrate-bound conformation. Here, we determined that MarP is located in the Mtb periplasm and showed that this localization is essential for function. Using the recombinant protease domain of MarP, we identified its substrate specificity using two independent assays: positional-scanning synthetic combinatorial library profiling and multiplex substrate profiling by mass spectrometry. These methods revealed that MarP prefers bulky residues at P4, tryptophan or leucine at P2, arginine or hydrophobic residues at P1, and alanine or asparagine at P1'. Guided by these data, we designed fluorogenic peptide substrates and characterized the kinetic properties of MarP. Finally, we tested the impact of mutating MarP cysteine residues on the peptidolytic activity of recombinant MarP and its ability to complement phenotypes of Mtb ΔMarP. Taken together, our studies provide insight into the enzymatic properties of MarP, its substrate preference, and the importance of its transmembrane helices and disulfide bond.


Assuntos
Mycobacterium tuberculosis/enzimologia , Estresse Oxidativo/fisiologia , Peptídeo Hidrolases/metabolismo , Proteínas Periplásmicas/metabolismo , Dobramento de Proteína , Concentração de Íons de Hidrogênio , Mutação , Mycobacterium tuberculosis/genética , Peptídeo Hidrolases/genética , Proteínas Periplásmicas/genética , Estrutura Secundária de Proteína , Especificidade por Substrato/fisiologia
10.
Nat Methods ; 9(11): 1095-100, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023596

RESUMO

We developed a simple and rapid multiplex substrate-profiling method to reveal the substrate specificity of any endo- or exopeptidase using liquid chromatography-tandem mass spectrometry sequencing. We generated a physicochemically diverse library of peptides by incorporating all combinations of neighbor and near-neighbor amino acid pairs into decapeptide sequences that are flanked by unique dipeptides at each terminus. Addition of a panel of evolutionarily diverse peptidases to a mixture of these tetradecapeptides generated information on prime and nonprime sites as well as on substrate specificity that matched or expanded upon known substrate motifs. This method biochemically confirmed the activity of the klassevirus 3C protein responsible for polypeptide processing and allowed granzyme B substrates to be ranked by enzymatic turnover efficiency using label-free quantitation of precursor-ion abundance. Additionally, the proteolytic secretions from schistosome parasitic flatworm larvae and a pancreatic cancer cell line were deconvoluted in a subtractive strategy using class-specific peptidase inhibitors.


Assuntos
Peptídeo Hidrolases/metabolismo , Especificidade por Substrato , Proteases Virais 3C , Animais , Carboxipeptidases/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Catepsina E/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Cisteína Endopeptidases/metabolismo , Exopeptidases/metabolismo , Granzimas/metabolismo , Humanos , Camundongos , Elastase Pancreática/metabolismo , Biblioteca de Peptídeos , Peptídeos/metabolismo , Schistosoma mansoni , Espectrometria de Massas em Tandem , Proteínas Virais/metabolismo
11.
J Biol Chem ; 287(25): 21152-63, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22539347

RESUMO

To identify the gut-associated tick aspartic hemoglobinase, this work focuses on the functional diversity of multiple Ixodes ricinus cathepsin D forms (IrCDs). Out of three encoding genes representing Ixodes scapularis genome paralogs, IrCD1 is the most distinct enzyme with a shortened propeptide region and a unique pattern of predicted post-translational modifications. IrCD1 gene transcription is induced by tick feeding and is restricted to the gut tissue. The hemoglobinolytic role of IrCD1 was further supported by immunolocalization of IrCD1 in the vesicles of tick gut cells. Properties of recombinantly expressed rIrCD1 are consistent with the endo-lysosomal environment because the zymogen is autoactivated and remains optimally active in acidic conditions. Hemoglobin cleavage pattern of rIrCD1 is identical to that produced by the native enzyme. The preference for hydrophobic residues at the P1 and P1' position was confirmed by screening a novel synthetic tetradecapeptidyl substrate library. Outside the S1-S1' regions, rIrCD1 tolerates most amino acids but displays a preference for tyrosine at P3 and alanine at P2'. Further analysis of the cleavage site location within the peptide substrate indicated that IrCD1 is a true endopeptidase. The role in hemoglobinolysis was verified with RNAi knockdown of IrCD1 that decreased gut extract cathepsin D activity by >90%. IrCD1 was newly characterized as a unique hemoglobinolytic cathepsin D contributing to the complex intestinal proteolytic network of mainly cysteine peptidases in ticks.


Assuntos
Proteínas de Artrópodes/metabolismo , Catepsina D/metabolismo , Hemoglobinas/metabolismo , Intestinos/enzimologia , Ixodes/enzimologia , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Proteínas de Artrópodes/genética , Catepsina D/genética , Genoma/fisiologia , Hemoglobinas/genética , Ixodes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica/fisiologia
12.
J Biol Chem ; 285(41): 31120-9, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20675366

RESUMO

Proteases are a ubiquitous group of enzymes that play key roles in the life cycle of parasites, in the host-parasite relationship, and in the pathogenesis of parasitic diseases. Furthermore, proteases are druggable targets for the development of new anti-parasitic therapy. The subtilisin protease (SUB; Clan SB, family S8) of Leishmania donovani was cloned and found to possess a unique catalytic triad. This gene was then deleted by gene knock-out, which resulted in reduced ability by the parasite to undergo promastigote to amastigote differentiation in vitro. Electron microscopy of SUB knock-out amastigotes revealed abnormal membrane structures, retained flagella, and increased binucleation. SUB-deficient Leishmania displayed reduced virulence in both hamster and murine infection models. Histology of spleens from SUB knock-out-infected hamsters revealed the absence of psammoma body calcifications indicative of the granulomatous lesions that occur during Leishmania infection. To delineate the specific role of SUB in parasite physiology, two-dimensional gel electrophoresis was carried out on SUB(-/-) versus wild-type parasites. SUB knock-out parasites showed altered regulation of the terminal peroxidases of the trypanothione reductase system. Leishmania and other trypanosomatids lack glutathione reductase, and therefore rely on the novel trypanothione reductase system to detoxify reactive oxygen intermediates and to maintain redox homeostasis. The predominant tryparedoxin peroxidases were decreased in SUB(-/-) parasites, and higher molecular weight isoforms were present, indicating altered processing. In addition, knock-out parasites showed increased sensitivity to hydroperoxide. These data suggest that subtilisin is the maturase for tryparedoxin peroxidases and is necessary for full virulence.


Assuntos
Leishmania donovani/enzimologia , Leishmania donovani/patogenicidade , NADH NADPH Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Subtilisina/metabolismo , Animais , Cricetinae , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Leishmania donovani/genética , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , NADH NADPH Oxirredutases/genética , Oxidantes/farmacologia , Proteínas de Protozoários/genética , Subtilisina/genética
13.
Bioconjug Chem ; 19(11): 2212-20, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18925772

RESUMO

A strategy for quantification of multiple protein isoforms from a complex sample background is demonstrated, combining isotopomeric rhodamine 6G (R6G) labels and surface-enhanced Raman in polyacrylamide matrix. The procedure involves isotope-encoding by lysine-labeling with (R6G) active ester reagents, isoform separation by 2-DGE, fluorescence quantification using internal standardization to water, and silver nanoparticle deposition followed by surface-enhanced Raman detection. R6G sample encoding and standardization enabled the determination of total protein concentration and the distribution of specific isoforms using the combined detection approach of water-referenced fluorescence spectral imaging and ratiometric quantification. A detection limit of approximately 13.5 picomolar R6G-labeled protein was determined for the surface-enhanced Raman in a gel matrix (15-fold lower than fluorescence). High quantification accuracies for small differences in protein populations at low nanogram abundance were demonstrated for human GMP synthetase (hGMPS) either as purified protein samples in a single-point determination mode (3% relative standard deviation, RSD%) or as HCT116 human cancer cellular lysate in an imaging application (with 16% RSD%). These results represent a prototype for future applications of isotopic surface-enhanced resonance Raman scatter to quantification of protein distributions.


Assuntos
Proteínas/análise , Proteínas/química , Rodaminas/química , Animais , Carbono-Nitrogênio Ligases/análise , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Extratos Celulares/química , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Ésteres/química , Fluorescência , Humanos , Marcação por Isótopo , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Padrões de Referência , Reprodutibilidade dos Testes , Rodaminas/metabolismo , Sensibilidade e Especificidade , Prata/química , Análise Espectral Raman
14.
Biochimie ; 90(2): 345-58, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17936488

RESUMO

Schistosomes are parasitic platyhelminths (flatworms) of birds and mammals. As a parasitic disease of humans, schistosomiasis ranks second only to malaria in global importance. Schistosome larvae (cercariae) must invade and penetrate skin as an initial step to successful infection of the vertebrate host. Proteolytic enzymes secreted from the acetabular glands of cercariae contribute significantly to the invasion process. In this comparative study, we analyzed protease activities secreted by cercariae of Schistosoma mansoni, Schistosoma japonicum and Schistosomatium douthitti. Using protease-family specific, irreversible active-site probes, fluorogenic peptidyl substrates, immuno-histochemistry and high-resolution mass spectrometry, considerable species differences were noted in the quantity and character of proteases. Serine proteases, the most abundant enzymes secreted by S. mansoni cercariae, were not identified in S. japonicum. In contrast, the acetabular gland contents of S. japonicum cercariae had a 40-fold greater cathepsin B-like activity than those of S. mansoni. Based on the present data and previous reports, we propose that cysteine proteases represent an archetypal tool for tissue invasion among primitive metazoa and the use of serine proteases arose later in schistosome evolution. Computational analysis of serine protease phylogeny revealed an extraordinarily distant relationship between S. mansoni serine proteases and other members of the Clan PA family S1 proteases.


Assuntos
Catepsina B/metabolismo , Schistosoma japonicum/enzimologia , Schistosoma mansoni/enzimologia , Serina Endopeptidases/metabolismo , Animais , Catepsina B/química , Quimotripsina/metabolismo , Transferência Genética Horizontal , Larva/enzimologia , Larva/patogenicidade , Espectrometria de Massas , Filogenia , Proteômica , Schistosoma japonicum/crescimento & desenvolvimento , Schistosoma japonicum/patogenicidade , Schistosomatidae/enzimologia , Serina Endopeptidases/classificação , Serina Endopeptidases/genética , Especificidade da Espécie
15.
J Biol Chem ; 280(24): 22651-63, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15840564

RESUMO

Catalase-peroxidases (KatG) are bifunctional enzymes possessing both catalase and peroxidase activities. Three crystal structures of different KatGs revealed the presence of a novel Met-Tyr-Trp cross-link that has been suggested to impart catalatic activity to the KatGs. High-performance liquid chromatographic separation of the peptide fragments resulting from tryptic digestion of recombinant Mycobacterium tuberculosis WT KatG identified a peptide with unusual UV-visible spectroscopic features attributable to the Met(255)-Tyr(229)-Trp(107) cross-link, whose structure was confirmed by mass spectrometry. WT KatG lacking the Met-Tyr-Trp cross-link was prepared, making possible studies of its formation under oxidizing conditions that generate either compound I (peroxyacetic acid, PAA) or compound II (2-methyl-1-phenyl-2-propyl hydroperoxide, MPPH). Incubation of this "cross-link-free" WT KatG with PAA revealed complete formation of the Met-Tyr-Trp structure after six equivalents of peracid were added, whereas MPPH was unable to promote cross-link formation. A mechanism for Met-Tyr-Trp autocatalytic formation by KatG compound I is proposed from these studies. Optical stopped-flow studies of WT KatG and KatG(Y229F), a mutant in which the cross-link cannot be formed, were performed with MPPH and revealed an unusual compound II spectrum for WT KatG, best described as (P.)Fe(III), where P. represents a protein-based radical. This contrasts with the oxoferryl compound II spectrum observed for KatG(Y229F) under identical conditions. The structure-function-spectroscopy relationship in KatG is discussed with relevance to the role that the Met-Tyr-Trp cross-link plays in the catalase-peroxidase mechanism.


Assuntos
Proteínas de Bactérias/fisiologia , Catalase/fisiologia , Metionina/química , Mycobacterium tuberculosis/enzimologia , Triptofano/química , Tirosina/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Catalase/química , Catálise , Cromatografia Líquida de Alta Pressão , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , Heme/química , Peróxido de Hidrogênio/química , Cinética , Espectrometria de Massas , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ácido Peracético/química , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Espectrofotometria , Fatores de Tempo , Tripsina/farmacologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA