Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960308

RESUMO

Obesity is one of the main risk factors for cardiovascular diseases, type II diabetes, hypertension, and certain cancers. Obesity in women at the reproductive stage adversely affects contraception, fertility, maternal well-being, and the health of their offspring. Being a major protein component in chylomicrons and high-density lipoproteins, apolipoprotein A-IV (apoA-IV) is involved in lipid metabolism, food intake, glucose homeostasis, prevention against atherosclerosis, and platelet aggregation. The goal of the present study is to determine the impact of apoA-IV deficiency on metabolic functions in 129X1/SvJ female mouse strain. After chronic high-fat diet feeding, apoA-IV-/- mice gained more weight with a higher fat percentage than wild-type (WT) mice, as determined by measuring their body composition. Increased adiposity and adipose cell size were also observed with a microscope, particularly in periovarian fat pads. Based on plasma lipid and adipokine assays, we found that obesity in apoA-IV-/- mice was not associated with hyperlipidemia but with higher leptin levels. Compared to WT mice, apoA-IV deficiency displayed glucose intolerance and elevated insulin levels, according to the data of the glucose tolerance test, and increased HOMA-IR values at fasting, suggesting possible insulin resistance. Lastly, we found obesity in apoA-IV-/- mice resulting from reduced energy expenditure but not food intake. Together, we established a novel and excellent female mouse model for future mechanistic study of obesity and its associated comorbidities.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Feminino , Humanos , Camundongos , Animais , Apolipoproteínas A , Obesidade/metabolismo , Camundongos Endogâmicos , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Camundongos Endogâmicos C57BL
2.
Hepatology ; 73(6): 2223-2237, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32976669

RESUMO

BACKGROUND AND AIMS: Adeno-associated viral (AAV) gene therapy has shown great promise as an alternative treatment for metabolic disorders managed using liver transplantation, but remains limited by transgene loss and genotoxicity. Our study aims to test an AAV vector with a promoterless integrating cassette, designed to provide sustained hepatic transgene expression and reduced toxicity in comparison to canonical AAV therapy. APPROACH AND RESULTS: Our AAV vector was designed to insert a methylmalonyl-CoA mutase (MMUT) transgene into the 3' end of the albumin locus and tested in mouse models of methylmalonic acidemia (MMA). After neonatal delivery, we longitudinally evaluated hepatic transgene expression, plasma levels of methylmalonate, and the MMA biomarker, fibroblast growth factor 21 (Fgf21), as well as integration of MMUT in the albumin locus. At necropsy, we surveyed for AAV-related hepatocellular carcinoma (HCC) in all treated MMA mice and control littermates. AAV-mediated genome editing of MMUT into the albumin locus resulted in permanent hepatic correction in MMA mouse models, which was accompanied by decreased levels of methylmalonate and Fgf21, and improved survival without HCC. With time, levels of transgene expression increased and methylmalonate progressively decreased, whereas the number of albumin-MMUT integrations and corrected hepatocytes in MMA mice increased, but not in similarly treated wild-type animals. Additionally, expression of MMUT in the setting of MMA conferred a selective growth advantage upon edited cells, which potentiates the therapeutic response. CONCLUSIONS: In conclusion, our findings demonstrate that AAV-mediated, promoterless, nuclease-free genome editing at the albumin locus provides safe and durable therapeutic benefit in neonatally treated MMA mice.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/terapia , Dependovirus/genética , Edição de Genes/métodos , Terapia Genética/métodos , Metilmalonil-CoA Mutase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/sangue , Hepatócitos , Neoplasias Hepáticas/patologia , Transplante de Fígado , Malonatos/sangue , Metilmalonil-CoA Mutase/genética , Camundongos , Camundongos Endogâmicos C57BL
3.
Curr Protoc Mouse Biol ; 9(1): e60, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30801996

RESUMO

This protocol provides a comprehensive reference for the evolution of the lymph fistula model, the mechanism of lipid absorption, the detailed procedure for studying lipid absorption using the lymph fistula model, the interpretation of the results, and consideration of the experimental design. The lymph fistula model is an approach to assess the concentration and rate of a range of molecules transported by the lymph by cannulating lymph duct in animals. In this protocol, mice first undergo surgery with the implantation of cannulae in the duodenum and mesenteric lymph duct and are allowed to recover overnight in Bollman restraining cages housed in a temperature-regulated environment. To study in vivo lipid absorption, a lipid emulsion is prepared with labeled tracers, including [3 H]-triolein and [14 C]-cholesterol. On the day of the experiment, mice are continuously infused with lipid emulsion via the duodenum for 6 hr, and lymph is usually collected hourly. At the end of the study, gastrointestinal segments and their luminal contents are collected separately for determination of the digestion, uptake, and transport of exogenous lipids. © 2019 by John Wiley & Sons, Inc.


Assuntos
Metabolismo dos Lipídeos , Linfa/metabolismo , Sistema Linfático/cirurgia , Animais , Radioisótopos de Carbono/administração & dosagem , Radioisótopos de Carbono/metabolismo , Colesterol/administração & dosagem , Colesterol/metabolismo , Camundongos , Trioleína/administração & dosagem , Trioleína/metabolismo , Trítio/administração & dosagem , Trítio/metabolismo
4.
J Biol Chem ; 293(9): 3399-3409, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29317502

RESUMO

Phosphoenolpyruvate carboxykinase (Pck1) is a metabolic enzyme that is integral to the gluconeogenic and glyceroneogenic pathways. However, Pck1's role in macrophage metabolism and function is unknown. Using stable isotopomer MS analysis in a mouse model with a myeloid cell-specific Pck1 deletion, we show here that this deletion increases the proinflammatory phenotype in macrophages. Incubation of LPS-stimulated bone marrow-derived macrophages (BMDM) with [U-13C]glucose revealed reduced 13C labeling of citrate and malate and increased 13C labeling of lactate in Pck1-deleted bone marrow-derived macrophages. We also found that the Pck1 deletion in the myeloid cells increases reactive oxygen species (ROS). Of note, this altered macrophage metabolism increased expression of the M1 cytokines TNFα, IL-1ß, and IL-6. We therefore conclude that Pck1 contributes to M1 polarization in macrophages. Our findings provide important insights into the factors determining the macrophage inflammatory response and indicate that Pck1 activity contributes to metabolic reprogramming and polarization in macrophages.


Assuntos
Deleção de Genes , Macrófagos/enzimologia , Fenótipo , Fosfoenolpiruvato Carboxiquinase (GTP)/deficiência , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Animais , Polaridade Celular , Glucose/metabolismo , Glutamina/metabolismo , Inflamação/enzimologia , Inflamação/genética , Inflamação/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Ácido Palmítico/metabolismo , Células RAW 264.7
5.
Mediators Inflamm ; 2015: 909827, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635450

RESUMO

TThe molecular mechanisms responsible for the development of hepatic fibrosis are not fully understood. The Nlrc4 inflammasome detects cytosolic presence of bacterial components, activating inflammatory cytokines to facilitate clearance of pathogens and infected cells. We hypothesized that low-grade constitutive activation of the Nlrc4 inflammasome may lead to induced hepatocyte proliferation and prevent the development of hepatic fibrosis. The gene of Nlrc4 contains two single nucleotide polymorphisms (SNPs), one located within the Nlrc4 promoter and one contained within exon 5. These SNPs regulate Nlrc4 gene transcription and activation as measured through gene reporter assays and IL-1ß secretion. The 17C-6 mice have increased IL-1ß in plasma after chronic carbon tetrachloride (CCl4) administration compared to B6 mice. After two-thirds partial hepatectomy (2/3PH) 17C-6 mice have earlier restoration of liver mass with greater cyclin D1 protein and BrdU incorporation compared to B6 mice at several time points. These data reveal mild constitutive activation of the Nlrc4 inflammasome as the results of two SNPs, which leads to the stimulation of hepatocyte proliferation. The increased liver regeneration induces rapid liver mass recovery after hepatectomy and may prevent the development of hepatotoxin-induced liver fibrosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inflamassomos/metabolismo , Cirrose Hepática/prevenção & controle , Regeneração Hepática/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Tetracloreto de Carbono/toxicidade , Hepatectomia , Proteínas de Homeodomínio/metabolismo , Inflamassomos/imunologia , Interleucina-1beta/sangue , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Regeneração Hepática/genética , Regeneração Hepática/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Células RAW 264.7
6.
Mediators Inflamm ; 2013: 751374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24453428

RESUMO

Alcoholic liver disease (ALD) is characterized by increased hepatic lipid accumulation (steatosis) and inflammation with increased expression of proinflammatory cytokines. Two of these cytokines, interleukin-1 ß (IL-1 ß ) and IL-18, require activation of caspase-1 via members of the NOD-like receptor (NLR) family. These NLRs form an inflammasome that is activated by pathogens and signals released through local tissue injury or death. NLR family pyrin domain containing 3 (Nlrp3) and NLR family CARD domain containing protein 4 (Nlrc4) have been studied minimally for their role in the development of ALD. Using mice with gene targeted deletions for Nlrp3 (Nlrp3(-/-)) and Nlrc4 (Nlrc4(-/-)), we analyzed the response to chronic alcohol consumption. We found that Nlrp3(-/-) mice have more severe liver injury with higher plasma alanine aminotransferase (ALT) levels, increased activation of IL-18, and reduced activation of IL-1B. In contrast, the Nlrc4(-/-) mice had similar alcohol-induced liver injury compared to C57BL/6J (B6) mice but had greatly reduced activation of IL-1 ß . This suggests that Nlrp3 and Nlrc4 inflammasomes activate IL-1 ß and IL-18 via caspase-1 in a differential manner. We conclude that the Nlrp3 inflammasome is protective during alcohol-induced liver injury.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Transporte/fisiologia , Inflamassomos/fisiologia , Hepatopatias Alcoólicas/etiologia , Animais , Quimiocina CCL2/fisiologia , Deficiência de Colina/complicações , Interleucina-18/fisiologia , Interleucina-1beta/fisiologia , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Transcrição STAT3/fisiologia , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA