Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 142: 111961, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34329824

RESUMO

We previously reported the anticancer activity of 4-(4-fluorobenzylcarbamoylmethyl)-3-(4-cyclohexylphenyl)-2-[3-(N,N-dimethylureido)-N'-methylpropylamino]-3,4-dihydroquinazoline (OZ-001), a T-type calcium channel (TTCC) blocker, against non-small cell lung cancer (NSCLC) in vitro and in vivo. Here, we evaluated the synergistic effect of OZ-001 and cisplatin on A549 human lung cancer cells and A549 xenograft mice. Our study demonstrated that treatment with OZ-001 and cisplatin sensitized A549 cells to cisplatin and significantly inhibited cell growth, increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, and induced poly (ADP-ribose) polymerase (PARP) cleavage in A549 cells and an A549 xenograft tumor mouse model. Moreover, our findings showed that mechanistic target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6K), and signal transducer and activator of transcription (STAT3) inactivation was required for apoptosis induced by the combination of OZ-001 and cisplatin in in vitro and in vivo experiments. Our results suggest that combined treatment with OZ-001 and cisplatin could potentiate antiproliferative effects via suppression of the mTOR/p70S6K and STAT3 pathways and may be considered a potential therapeutic agent for NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Bioorg Med Chem ; 28(11): 115491, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327350

RESUMO

In our previous work, a series of 2-amino-3,4-dihydroquinazoline derivativesusing an electron acceptor group was reported to be potent T-type calcium channel blockers and exhibit strong cytotoxic effects against various cancerous cell lines. To investigate the role of the guanidine moiety in the 2-amino-3,4-dihydroquinazoline scaffold as a pharmacophore for dual biological activity, a new series of 2-thio-3,4-dihydroquniazoline derivatives using an electron donor group at the C2-position was synthesized and evaluated for T-type calcium channel blocking activity and cytotoxic effects against two human cancerous cell lines (lung cancer A549 and colon cancer HCT-116). Among them, compound 6g showed potent inhibition of Cav3.2 currents (83% inhibition) at 10 µM concentrations. The compound also exhibited IC50 values of 5.0 and 6.4 µM against A549 and HCT-116 cell lines, respectively, which are comparable to the parental lead compound KYS05090. These results indicate that the isothiourea moiety similar to the guanidine moiety of 2-amino-3,4-dihydroquinazoline derivatives may be an essential pharmacophore for the desired biological activities. Therefore, our preliminary work can provide the opportunity to expand a chemical repertoire to improve affinity and selectivity for T-type calcium channels.


Assuntos
Antineoplásicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Quinazolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
J Clin Med ; 9(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150979

RESUMO

We previously reported that 4-(4-fluorobenzylcarbamoylmethyl)-3-(4-cyclohexylphenyl)-2-[3-(N,N-dimethylureido)-N'-methylpropylamino]-3,4-dihydroquinazoline (KCP10043F) can induce G1-phase arrest and synergistic cell death in combination with etoposide in lung cancer cells. Here, we investigated the underlying mechanism by which KCP10043F induces cell death in non-small cell lung cancer (NSCLC). Propidium iodide (PI) and annexin V staining revealed that KCP10043F-induced cytotoxicity was caused by apoptosis. KCP10043F induced a series of intracellular events: (1) downregulation of Bcl-2 and Bcl-xL and upregulation of Bax and cleaved Bid; (2) loss of mitochondrial membrane potential; (3) increase of cytochrome c release; (4) cleavage of procaspase-8, procaspase-9, procaspase-3, and poly (ADP-ribose) polymerase (PARP). In addition, KCP10043F exhibited potent inhibitory effects on constitutive or interleukin-6 (IL-6)-induced signal transducer and activator of transcription (STAT3) phosphorylation and STAT3-regulated genes including survivin, Mcl-1, and cyclin D1. Furthermore, STAT3 overexpression attenuated KCP10043F-induced apoptosis and the cleavage of caspase-9, caspase-3, and PARP. Docking analysis disclosed that KCP10043F could bind to a pocket in the SH2 domain of STAT3 and prevent STAT3 phosphorylation. The oral administration of KCP10043F decreased tumor growth in an A549 xenograft mouse model, as associated with the reduced phosphorylated STAT3, survivin, Mcl-1, and Bcl-2 expression and increased TUNEL staining and PARP cleavage in tumor tissues. Collectively, our data suggest that KCP10043F suppresses NSCLC cell growth through apoptosis induction via STAT3 inactivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA