Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935867

RESUMO

Cancer patients frequently develop chemotherapy-induced peripheral neuropathy (CIPN), a painful and long-lasting disorder with profound somatosensory deficits. There are no effective therapies to prevent or treat this disorder. Pathologically, CIPN is characterized by a "dying-back" axonopathy that begins at intra-epidermal nerve terminals of sensory neurons and progresses in a retrograde fashion. Calcium dysregulation constitutes a critical event in CIPN, but it is not known how chemotherapies such as paclitaxel alter intra-axonal calcium and cause degeneration. Here, we demonstrate that paclitaxel triggers Sarm1-dependent cADPR production in distal axons, promoting intra-axonal calcium flux from both intracellular and extracellular calcium stores. Genetic or pharmacologic antagonists of cADPR signaling prevent paclitaxel-induced axon degeneration and allodynia symptoms, without mitigating the anti-neoplastic efficacy of paclitaxel. Our data demonstrate that cADPR is a calcium-modulating factor that promotes paclitaxel-induced axon degeneration and suggest that targeting cADPR signaling provides a potential therapeutic approach for treating paclitaxel-induced peripheral neuropathy (PIPN).


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Proteínas do Citoesqueleto/metabolismo , Degeneração Neural/patologia , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Animais , Canais de Cálcio/metabolismo , ADP-Ribose Cíclica/antagonistas & inibidores , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
2.
Elife ; 102021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779400

RESUMO

SARM1 is an inducible NAD+ hydrolase that triggers axon loss and neuronal cell death in the injured and diseased nervous system. While SARM1 activation and enzyme function are well defined, the cellular events downstream of SARM1 activity but prior to axonal demise are much less well understood. Defects in calcium, mitochondria, ATP, and membrane homeostasis occur in injured axons, but the relationships among these events have been difficult to disentangle because prior studies analyzed large collections of axons in which cellular events occur asynchronously. Here, we used live imaging of mouse sensory neurons with single axon resolution to investigate the cellular events downstream of SARM1 activity. Our studies support a model in which SARM1 NADase activity leads to an ordered sequence of events from loss of cellular ATP, to defects in mitochondrial movement and depolarization, followed by calcium influx, externalization of phosphatidylserine, and loss of membrane permeability prior to catastrophic axonal self-destruction.


Assuntos
Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/genética , Células Receptoras Sensoriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Mitocôndrias/metabolismo , NAD+ Nucleosidase/metabolismo
3.
J Cell Biol ; 219(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32609299

RESUMO

Neuroinflammation and necroptosis are major contributors to neurodegenerative disease, and axon dysfunction and degeneration is often an initiating event. SARM1 is the central executioner of pathological axon degeneration. Here, we demonstrate functional and mechanistic links among these three pro-degenerative processes. In a neuroinflammatory model of glaucoma, TNF-α induces SARM1-dependent axon degeneration, oligodendrocyte loss, and subsequent retinal ganglion cell death. TNF-α also triggers SARM1-dependent axon degeneration in sensory neurons via a noncanonical necroptotic signaling mechanism. MLKL is the final executioner of canonical necroptosis; however, in axonal necroptosis, MLKL does not directly trigger degeneration. Instead, MLKL induces loss of the axon survival factors NMNAT2 and STMN2 to activate SARM1 NADase activity, which leads to calcium influx and axon degeneration. Hence, these findings define a specialized form of axonal necroptosis. The demonstration that neuroinflammatory signals and necroptosis can act locally in the axon to stimulate SARM1-dependent axon degeneration identifies a therapeutically targetable mechanism by which neuroinflammation can stimulate axon loss in neurodegenerative disease.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Gânglios Espinais/metabolismo , Glaucoma/metabolismo , Necroptose , Degeneração Neural , Células Ganglionares da Retina/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Axônios/patologia , Células Cultivadas , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Gânglios Espinais/patologia , Glaucoma/induzido quimicamente , Glaucoma/genética , Glaucoma/patologia , Camundongos Endogâmicos C57BL , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Células Ganglionares da Retina/patologia , Transdução de Sinais , Estatmina/metabolismo , Fator de Necrose Tumoral alfa
4.
J Neurosci ; 33(19): 8301-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23658170

RESUMO

Presynaptic axonal varicosities, like postsynaptic spines, are dynamically added and eliminated even in mature neuronal circuitry. To study the role of this axonal structural plasticity in behavioral learning, we performed two-photon in vivo imaging of cerebellar parallel fibers (PFs) in adult mice. PFs make excitatory synapses on Purkinje cells (PCs) in the cerebellar cortex, and long-term potentiation and depression at PF-PC synapses are thought to play crucial roles in cerebellar-dependent learning. Time-lapse vital imaging of PFs revealed that, under a control condition (no behavioral training), ∼10% of PF varicosities appeared and disappeared over a period of 2 weeks without changing the total number of varicosities. The fraction of dynamic PF varicosities significantly diminished during training on an acrobatic motor skill learning task, largely because of reduced addition of new varicosities. Thus, this form of motor learning was associated with greater structural stability of PFs and a slight decrease in the total number of varicosities. Together with prior findings that the number of PF-PC synapses increases during similar training, our results suggest that acrobatic motor skill learning involves a reduction of some PF inputs and a strengthening of others, probably via the conversion of some preexisting PF varicosities into multisynaptic terminals.


Assuntos
Axônios/fisiologia , Cerebelo/anatomia & histologia , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Fibras Nervosas/fisiologia , Plasticidade Neuronal/fisiologia , Adenoviridae/genética , Animais , Cerebelo/fisiologia , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células de Purkinje/fisiologia , Sinapses/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA