Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 162: 114716, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086509

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) exhibits a pronounced extracellular matrix (ECM)-rich response, which is produced by an excessive amount of transforming growth factor ß (TGF-ß), resulting in tumor progression and metastasis. In addition, TGF-ß signaling contributes to rapidly acquired resistance and incomplete response to gemcitabine. Recently, selective inhibitors of the TGF-ß signaling pathway have shown promise in PDAC treatment, particularly as an option for augmenting responses to chemotherapy. Here, we investigated the synergistic anticancer effects of a small-molecule TGF-ß receptor I kinase inhibitor (vactosertib/EW-7197) in the presence of gemcitabine, and its mechanism of action in pancreatic cancer. Vactosertib sensitized pancreatic cancer cells to gemcitabine by synergistically inhibiting their viability. Importantly, the combination of vactosertib and gemcitabine significantly attenuated the expression of major ECM components, including collagens, fibronectin, and α-SMA, in pancreatic cancer compared with gemcitabine alone. This resulted in potent induction of mitochondrial-mediated apoptosis, gemcitabine-mediated cytotoxicity, and inhibition of tumor ECM by vactosertib. Additionally, the combination decreased metastasis through inhibition of migration and invasion, and exhibited synergistic anti-cancer activity by inhibiting the TGF-ß/Smad2 pathway in pancreatic cancer cells. Furthermore, co-treatment significantly suppressed tumor growth in orthotopic models. Therefore, our findings demonstrate that vactosertib synergistically increased the antitumor activity of gemcitabine via inhibition of ECM component production by inhibiting the TGF-ß/Smad2 signaling pathway. This suggests that the combination of vactosertib and gemcitabine may be a potential treatment option for patients with pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas
2.
Am J Cancer Res ; 12(9): 4326-4342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225647

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extracellular matrix (ECM)-rich carcinoma, which promotes chemoresistance by inhibiting drug diffusion into the tumor. Discoidin domain receptor 1 (DDR1) increases tumor progression and drug resistance by binding to collagen, a major component of tumor ECM. Therefore, DDR1 inhibition may be helpful in cancer therapeutics by increasing drug delivery efficiency and improving drug sensitivity. In this study, we developed a novel DDR1 inhibitor, KI-301690 and investigated whether it could improve the anticancer activity of gemcitabine, a cytotoxic agent widely used for the treatment of pancreatic cancer. KI-301690 synergized with gemcitabine to suppress the growth of pancreatic cancer cells. Importantly, its combination significantly attenuated the expression of major tumor ECM components including collagen, fibronectin, and vimentin compared to gemcitabine alone. Additionally, this combination effectively decreased mitochondrial membrane potential (MMP), thereby inducing apoptosis. Further, the combination synergistically inhibited cell migration and invasion. The enhanced anticancer efficacy of the co-treatment could be explained by the inhibition of DDR1/PYK2/FAK signaling, which significantly reduced tumor growth in a pancreatic xenograft model. Our results demonstrate that KI-301690 can inhibit aberrant ECM expression by DDR1/PYK2/FAK signaling pathway blockade and attenuation of ECM-induced chemoresistance observed in desmoplastic pancreatic tumors, resulting in enhanced antitumor effect through effective induction of gemcitabine apoptosis.

3.
Am J Cancer Res ; 12(7): 3083-3098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968350

RESUMO

The use of anesthetics in the surgical resection of tumors may influence the prognosis of cancer patients. Lidocaine, a local anesthetic, is known to act as a chemosensitizer and relieve pain in some cancers. In addition, palbociclib, a potent cyclin-dependent kinase (CDK) 4/6 inhibitor, has been approved for chemotherapy of advanced breast cancer. However, recent studies have revealed the acquired resistance of breast cancer cells to palbociclib. Therefore, the development of combination therapies that can extend the efficacy of palbociclib or delay resistance is crucial. This study investigated whether lidocaine would enhance the efficacy of palbociclib in breast cancer. Lidocaine synergistically suppressed the growth and proliferation of breast cancer cells by palbociclib. The combination treatment showed an increased cell cycle arrest in the G0/G1 phase by decreasing retinoblastoma protein (Rb) and E2F1 expression. In addition, it increased apoptosis by loss of mitochondrial membrane potential as observed by increases in cytochrome c release and inhibition of mitochondria-mediated protein expression. Additionally, it significantly reduced epithelial-mesenchymal transition and PI3K/AKT/GSK3ß signaling. In orthotopic breast cancer models, this combination treatment significantly inhibited tumor growth and increased tumor cell apoptosis compared to those treated with a single drug. Taken together, this study demonstrates that the combination of palbociclib and lidocaine has a synergistic anti-cancer effect on breast cancer cells by the inhibition of the PI3K/AKT/GSK3ß pathway, suggesting that this combination could potentially be an effective therapy for breast cancer.

4.
Biomed Pharmacother ; 152: 113241, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691157

RESUMO

The novel (nua) kinase family 1 (NUAK1) is an AMPK-related kinase and its expression is associated with tumor malignancy and poor prognosis in several types of cancer, suggesting its potential as a target for cancer therapy. Therefore, the development of NUAK1-targeting inhibitors could improve therapeutic outcomes in cancer. We synthesized KI-301670, a novel NUAK1 inhibitor, and assessed its anticancer effects and mechanism of action in pancreatic cancer. It effectively inhibited pancreatic cancer growth and proliferation, and induced cell cycle arrest, markedly G0/G1 arrest, by increasing the expression of p27 and decreasing expression of p-Rb and E2F1. Additionally, the apoptotic effect of KI-301670 was observed by an increase in cleaved PARP, TUNEL-positive cells, and annexin V cell population, as well as the release of cytochrome c via the loss of mitochondrial membrane potential. KI-301670 inhibited the migration and invasion of pancreatic cancer cells. Mechanistically, KI-301670 effectively inhibited the PI3K/AKT pathway in pancreatic cancer cells. Furthermore, it significantly attenuated tumor growth in a mouse xenograft tumor model. Our results demonstrate that a novel NUAK1 inhibitor, KI-301670, exerts anti-tumor effects by directly suppressing cancer cell growth by affecting the PI3K/AKT pathway, suggesting that it could be a novel therapeutic candidate for pancreatic cancer treatment.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA