Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
World J Pediatr Congenit Heart Surg ; : 21501351241232077, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646826

RESUMO

Objectives: We previously demonstrated cerebral mitochondrial dysfunction in neonatal swine immediately following a period of full-flow cardiopulmonary bypass (CPB). The extent to which this dysfunction persists in the postoperative period and its correlation with other markers of cerebral bioenergetic failure and injury is unknown. We utilized a neonatal swine model to investigate the early evolution of mitochondrial function and cerebral bioenergetic failure after CPB. Methods: Twenty piglets (mean weight 4.4 ± 0.5 kg) underwent 3 h of CPB at 34 °C via cervical cannulation and were followed for 8, 12, 18, or 24 h (n = 5 per group). Markers of brain tissue damage (glycerol) and bioenergetic dysfunction (lactate to pyruvate ratio) were continuously measured in cerebral microdialysate samples. Control animals (n = 3, mean weight 4.1 ± 1.2 kg) did not undergo cannulation or CPB. Brain tissue was extracted immediately after euthanasia to obtain ex-vivo cortical mitochondrial respiration and frequency of cortical microglial nodules (indicative of cerebral microinfarctions) via neuropathology. Results: Both the lactate to pyruvate ratio (P < .0001) and glycerol levels (P = .01) increased in cerebral microdialysate within 8 h after CPB. At 24 h post-CPB, cortical mitochondrial respiration was significantly decreased compared with controls (P = .046). The presence of microglial nodules increased throughout the study period (24 h) (P = .01, R2 = 0.9). Conclusion: CPB results in impaired cerebral bioenergetics that persist for at least 24 h. During this period of bioenergetic impairment, there may be increased susceptibility to secondary injury related to alterations in metabolic delivery or demand, such as hypoglycemia, seizures, and decreased cerebral blood flow.

2.
medRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38105980

RESUMO

Background: Infants with complex congenital heart disease (CHD) require life-saving corrective/palliative heart surgery in the first weeks of life. These infants are at risk for brain injury and poor neurodevelopmental outcomes. Cerebral microhemorrhages (CMH) are frequently seen after neonatal bypass heart surgery, but it remains unknown if CMH are a benign finding or constitute injury. Herein, we investigate the risk factors for developing CMH and their clinical significance. Methods: 192 infants with CHD undergoing corrective cardiac surgery with cardiopulmonary bypass (CPB) at a single institution were prospectively evaluated with pre-(n = 183) and/or postoperative (n = 162) brain magnetic resonance imaging (MRI). CMH severity was scored based on total number of microhemorrhages. Antenatal, perioperative, and postoperative candidate risk factors for CMH and neurodevelopmental (ND) outcomes were analyzed. Eighteen-month neurodevelopmental outcomes were assessed using the Bayley-III Scales of Infants and Toddler Development in a subset of patients (n = 82). Linear regression was used to analyze associations between risk factors or ND outcomes and presence/number of CMH. Results: The most common CHD subtypes were hypoplastic left heart syndrome (HLHS) (37%) and transposition of the great arteries (TGA) (33%). Forty-two infants (23%) had CMH present on MRI before surgery and 137 infants (85%) post-surgery. No parameters evaluated were significant risk factors for preoperative CMH. In multivariate analysis, cardiopulmonary bypass (CPB) duration (p < 0.0001), use of extracorporeal membrane oxygenation (ECMO) support (p < 0.0005), postoperative seizure(s) (p < 0.03), and lower birth weight (p < 0.03) were associated with new or worsened CMH postoperatively. Higher CMH number was associated with lower scores on motor (p < 0.03) testing at 18 months. Conclusion: CMH is a common imaging finding in infants with CHD with increased prevalence and severity after CPB and adverse impact on neurodevelopmental outcomes starting at a young age. Longer duration of CPB and need for postoperative ECMO were the most significant risk factors for developing CMH. However, presence of CMH on preoperative scans indicates non-surgical risk factors that are yet to be identified. Neuroprotective strategies to mitigate risk factors for CMH may improve neurodevelopmental outcomes in this vulnerable population.

3.
Metabolites ; 13(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37999249

RESUMO

Cardiopulmonary bypass (CPB) provides cerebral oxygenation and blood flow (CBF) during neonatal congenital heart surgery, but the impacts of CPB on brain oxygen supply and metabolic demands are generally unknown. To elucidate this physiology, we used diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy to continuously measure CBF, oxygen extraction fraction (OEF), and oxygen metabolism (CMRO2) in 27 neonatal swine before, during, and up to 24 h after CPB. Concurrently, we sampled cerebral microdialysis biomarkers of metabolic distress (lactate-pyruvate ratio) and injury (glycerol). We applied a novel theoretical approach to correct for hematocrit variation during optical quantification of CBF in vivo. Without correction, a mean (95% CI) +53% (42, 63) increase in hematocrit resulted in a physiologically improbable +58% (27, 90) increase in CMRO2 relative to baseline at CPB initiation; following correction, CMRO2 did not differ from baseline at this timepoint. After CPB initiation, OEF increased but CBF and CMRO2 decreased with CPB time; these temporal trends persisted for 0-8 h following CPB and coincided with a 48% (7, 90) elevation of glycerol. The temporal trends and glycerol elevation resolved by 8-24 h. The hematocrit correction improved quantification of cerebral physiologic trends that precede and coincide with neurological injury following CPB.

4.
Front Pediatr ; 11: 1125985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425272

RESUMO

Background: Surgical procedures involving the aortic arch present unique challenges to maintaining cerebral perfusion, and optimal neuroprotective strategies to prevent neurological injury during such high-risk procedures are not completely understood. The use of antegrade cerebral perfusion (ACP) has gained favor as a neuroprotective strategy over deep hypothermic circulatory arrest (DHCA) due to the ability to selectively perfuse the brain. Despite this theoretical advantage over DHCA, there has not been conclusive evidence that ACP is superior to DHCA. One potential reason for this is the incomplete understanding of ideal ACP flow rates to prevent both ischemia from underflowing and hyperemia and cerebral edema from overflowing. Critically, there are no continuous, noninvasive measurements of cerebral blood flow (CBF) and cerebral oxygenation (StO2) to guide ACP flow rates and help develop standard clinical practices. The purpose of this study is to demonstrate the feasibility of using noninvasive, diffuse optical spectroscopy measurements of CBF and cerebral oxygenation during the conduct of ACP in human neonates undergoing the Norwood procedure. Methods: Four neonates prenatally diagnosed with hypoplastic left heart syndrome (HLHS) or a similar variant underwent the Norwood procedure with continuous intraoperative monitoring of CBF and cerebral oxygen saturation (StO2) using two non-invasive optical techniques, namely diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy (FD-DOS). Changes in CBF and StO2 due to ACP were calculated by comparing these parameters during a stable 5 min period of ACP to the last 5 min of full-body CPB immediately prior to ACP initiation. Flow rates for ACP were left to the discretion of the surgeon and ranged from 30 to 50 ml/kg/min, and all subjects were cooled to 18°C prior to initiation of ACP. Results: During ACP, the continuous optical monitoring demonstrated a median (IQR) percent change in CBF of -43.4% (38.6) and a median (IQR) absolute change in StO2 of -3.6% (12.3) compared to a baseline period during full-body cardiopulmonary bypass (CPB). The four subjects demonstrated varying responses in StO2 due to ACP. ACP flow rates of 30 and 40 ml/kg/min (n = 3) were associated with decreased CBF during ACP compared to full-body CPB. Conversely, one subject with a higher flow6Di rate of 50 ml/kg/min demonstrated increased CBF and StO2 during ACP. Conclusions: This feasibility study demonstrates that novel diffuse optical technologies can be utilized for improved neuromonitoring in neonates undergoing cardiac surgery where ACP is utilized. Future studies are needed to correlate these findings with neurological outcomes to inform best practices during ACP in these high-risk neonates.

5.
Metabolites ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005609

RESUMO

Neonates undergoing cardiac surgery involving aortic arch reconstruction are at an increased risk for hypoxic-ischemic brain injury. Deep hypothermia is utilized to help mitigate this risk when periods of circulatory arrest are needed for surgical repair. Here, we investigate correlations between non-invasive optical neuromonitoring of cerebral hemodynamics, which has recently shown promise for the prediction of postoperative white matter injury in this patient population, and invasive cerebral microdialysis biomarkers. We compared cerebral tissue oxygen saturation (StO2), relative total hemoglobin concentration (rTHC), and relative cerebral blood flow (rCBF) measured by optics against the microdialysis biomarkers of metabolic stress and injury (lactate-pyruvate ratio (LPR) and glycerol) in neonatal swine models of deep hypothermic cardiopulmonary bypass (DHCPB), selective antegrade cerebral perfusion (SACP), and deep hypothermic circulatory arrest (DHCA). All three optical parameters were negatively correlated with LPR and glycerol in DHCA animals. Elevation of LPR was found to precede the elevation of glycerol by 30-60 min. From these data, thresholds for the detection of hypoxic-ischemia-associated cerebral metabolic distress and neurological injury are suggested. In total, this work provides insight into the timing and mechanisms of neurological injury following hypoxic-ischemia and reports a quantitative relationship between hypoxic-ischemia severity and neurological injury that may inform DHCA management.

6.
Pediatr Res ; 91(6): 1374-1382, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947997

RESUMO

BACKGROUND: Cerebral autoregulation mechanisms help maintain adequate cerebral blood flow (CBF) despite changes in cerebral perfusion pressure. Impairment of cerebral autoregulation, during and after cardiopulmonary bypass (CPB), may increase risk of neurologic injury in neonates undergoing surgery. In this study, alterations of cerebral autoregulation were assessed in a neonatal swine model probing four perfusion strategies. METHODS: Neonatal swine (n = 25) were randomized to continuous deep hypothermic cardiopulmonary bypass (DH-CPB, n = 7), deep hypothermic circulatory arrest (DHCA, n = 7), selective cerebral perfusion (SCP, n = 7) at deep hypothermia, or normothermic cardiopulmonary bypass (control, n = 4). The correlation coefficient (LDx) between laser Doppler measurements of CBF and mean arterial blood pressure was computed at initiation and conclusion of CPB. Alterations in cerebral autoregulation were assessed by the change between initial and final LDx measurements. RESULTS: Cerebral autoregulation became more impaired (LDx increased) in piglets that underwent DH-CPB (initial LDx: median 0.15, IQR [0.03, 0.26]; final: 0.45, [0.27, 0.74]; p = 0.02). LDx was not altered in those undergoing DHCA (p > 0.99) or SCP (p = 0.13). These differences were not explained by other risk factors. CONCLUSIONS: In a validated swine model of cardiac surgery, DH-CPB had a significant effect on cerebral autoregulation, whereas DHCA and SCP did not. IMPACT: Approximately half of the patients who survive neonatal heart surgery with cardiopulmonary bypass (CPB) experience neurodevelopmental delays. This preclinical investigation takes steps to elucidate and isolate potential perioperative risk factors of neurologic injury, such as impairment of cerebral autoregulation, associated with cardiac surgical procedures involving CPB. We demonstrate a method to characterize cerebral autoregulation during CPB pump flow changes in a neonatal swine model of cardiac surgery. Cerebral autoregulation was not altered in piglets that underwent deep hypothermic circulatory arrest (DHCA) or selective cerebral perfusion (SCP), but it was altered in piglets that underwent deep hypothermic CBP.


Assuntos
Ponte Cardiopulmonar , Hipotermia Induzida , Animais , Animais Recém-Nascidos , Ponte Cardiopulmonar/efeitos adversos , Circulação Cerebrovascular , Homeostase , Suínos
7.
Semin Thorac Cardiovasc Surg ; 34(4): 1275-1284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34508811

RESUMO

Cardiac surgery utilizing circulatory arrest is most commonly performed under deep hypothermia (∼18°C) to suppress tissue oxygen demand and provide neuroprotection during operative circulatory arrest. Studies investigating the effects of deep hypothermic circulatory arrest (DHCA) on neurodevelopmental outcomes of patients with congenital heart disease give conflicting results. Here, we address these issues by quantifying changes in cerebral oxygen saturation, blood flow, and oxygen metabolism in neonates during DHCA and investigating the association of these changes with postoperative brain injury. Neonates with critical congenital heart disease undergoing DHCA were recruited for continuous intraoperative monitoring of cerebral oxygen saturation (ScO2) and an index of cerebral blood flow (CBFi) using 2 noninvasive optical techniques, diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS). Pre- and postoperative brain magnetic resonance imaging (MRI) was performed to detect white matter injury (WMI). Fifteen neonates were studied, and 11/15 underwent brain MRI. During DHCA, ScO2 decreased exponentially in time with a median decay rate of -0.04 min-1. This decay rate was highly variable between subjects. Subjects who had larger decreases in ScO2 during DHCA were more likely to have postoperative WMI (P = 0.02). Cerebral oxygen extraction persists during DHCA and varies widely from patient-to-patient. Patients with a higher degree of oxygen extraction during DHCA were more likely to show new WMI in postoperative MRI. These findings suggest cerebral oxygen extraction should be monitored during DHCA to identify patients at risk for hypoxic-ischemic injury, and that current commercial cerebral oximeters may underestimate cerebral oxygen extraction.


Assuntos
Lesões Encefálicas , Parada Circulatória Induzida por Hipotermia Profunda , Recém-Nascido , Humanos , Parada Circulatória Induzida por Hipotermia Profunda/efeitos adversos , Resultado do Tratamento , Circulação Cerebrovascular , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/etiologia , Oxigênio , Ponte Cardiopulmonar/efeitos adversos
8.
Pediatr Res ; 88(6): 925-933, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32172282

RESUMO

BACKGROUND: Extra-corporeal membrane oxygenation (ECMO) is a life-saving intervention for severe respiratory and cardiac diseases. However, 50% of survivors have abnormal neurologic exams. Current ECMO management is guided by systemic metrics, which may poorly predict cerebral perfusion. Continuous optical monitoring of cerebral hemodynamics during ECMO holds potential to detect risk factors of brain injury such as impaired cerebrovascular autoregulation (CA). METHODS: We conducted daily measurements of microvascular cerebral blood flow (CBF), oxygen saturation, and total hemoglobin concentration using diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy in nine neonates. We characterize CA utilizing the correlation coefficient (DCSx) between CBF and mean arterial blood pressure (MAP) during ECMO pump flow changes. RESULTS: Average MAP and pump flow levels were weakly correlated with CBF and were not correlated with cerebral oxygen saturation. CA integrity varied between individuals and with time. Systemic measurements of MAP, pulse pressure, and left cardiac dysfunction were not predictive of impaired CA. CONCLUSIONS: Our pilot results suggest that systemic measures alone cannot distinguish impaired CA from intact CA during ECMO. Furthermore, optical neuromonitoring could help determine patient-specific ECMO pump flows for optimal CA integrity, thereby reducing risk of secondary brain injury. IMPACT: Cerebral blood flow and oxygenation are not well predicted by systemic proxies such as ECMO pump flow or blood pressure. Continuous, quantitative, bedside monitoring of cerebral blood flow and oxygenation with optical tools enables new insight into the adequacy of cerebral perfusion during ECMO. A demonstration of hybrid diffuse optical and correlation spectroscopies to continuously measure cerebral blood oxygen saturation and flow in patients on ECMO, enabling assessment of cerebral autoregulation. An observation of poor correlation of cerebral blood flow and oxygenation with systemic mean arterial pressure and ECMO pump flow, suggesting that clinical decision making guided by target values for these surrogates may not be neuroprotective. ~50% of ECMO survivors have long-term neurological deficiencies; continuous monitoring of brain health throughout therapy may reduce these tragically common sequelae through brain-focused adjustment of ECMO parameters.


Assuntos
Encéfalo/fisiopatologia , Circulação Cerebrovascular , Oxigenação por Membrana Extracorpórea/métodos , Hemodinâmica , Microcirculação , Oxigênio/metabolismo , Pressão Sanguínea , Lesões Encefálicas/fisiopatologia , Homeostase/fisiologia , Humanos , Projetos Piloto , Reprodutibilidade dos Testes , Risco , Fatores de Risco , Espalhamento de Radiação , Espectrofotometria , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Resultado do Tratamento
9.
J Cereb Blood Flow Metab ; 40(1): 187-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30375917

RESUMO

Management of deep hypothermic (DH) cardiopulmonary bypass (CPB), a critical neuroprotective strategy, currently relies on non-invasive temperature to guide cerebral metabolic suppression during complex cardiac surgery in neonates. Considerable inter-subject variability in temperature response and residual metabolism may contribute to the persisting risk for postoperative neurological injury. To characterize and mitigate this variability, we assess the sufficiency of conventional nasopharyngeal temperature (NPT) guidance, and in the process, validate combined non-invasive frequency-domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for direct measurement of cerebral metabolic rate of oxygen (CMRO2). During CPB, n = 8 neonatal swine underwent cooling from normothermia to 18℃, sustained DH perfusion for 40 min, and then rewarming to simulate cardiac surgery. Continuous non-invasive and invasive measurements of intracranial temperature (ICT) and CMRO2 were acquired. Significant hysteresis (p < 0.001) between cooling and rewarming periods in the NPT versus ICT and NPT versus CMRO2 relationships were found. Resolution of this hysteresis in the ICT versus CMRO2 relationship identified a crucial insufficiency of conventional NPT guidance. Non-invasive CMRO2 temperature coefficients with respect to NPT (Q10 = 2.0) and ICT (Q10 = 2.5) are consistent with previous reports and provide further validation of FD-DOS/DCS CMRO2 monitoring during DH CPB to optimize management.


Assuntos
Temperatura Corporal , Encéfalo/fisiologia , Ponte Cardiopulmonar/métodos , Hipotermia Induzida , Monitorização Fisiológica/métodos , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Modelos Animais , Perfusão , Análise Espectral/métodos , Suínos
10.
Ann Thorac Surg ; 106(6): 1841-1846, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30071237

RESUMO

BACKGROUND: Piglets are used to study neurologic effects of deep hypothermic circulatory arrest (DHCA), but no studies have compared human and swine electroencephalogram (EEG) responses to DHCA. The importance of isoelectricity before circulatory arrest is not fully known in neonates. We compared the EEG response to DHCA in human neonates and piglets. METHODS: We recorded 2 channel, left and right centroparietal, subdermal EEG in 10 neonatal patients undergoing operations involving DHCA and 10 neonatal piglets that were placed on cardiopulmonary bypass and underwent a simulated procedure using DHCA. EEG waveforms were analyzed for the presence and extent of burst suppression and isoelectricity by automated moving window analysis. The patients were monitored with 16-channel array EEG for 48 hours postoperatively and underwent postoperative brain magnetic resonance imaging. RESULTS: After induction of anesthesia, humans and piglets both displayed slowing or brief suppression, then mild burst suppression, and then severe burst suppression during cooling. All piglets subsequently achieved isoelectricity at 22.4° ± 6.9°C, whereas only 1 human did at 20.2°C. Piglets and humans emerged from severe, mild, and then brief suppression patterns during rewarming. Among the patients, there were no seizures during postoperative monitoring and 1 instance of increased white matter injury on postoperative magnetic resonance imaging. CONCLUSIONS: Our data suggest that current cooling strategies may not be sufficient to eliminate all EEG activity before circulatory arrest in humans but are sufficient in swine. This important difference between the swine and human response to DHCA should be considered when using this model.


Assuntos
Parada Circulatória Induzida por Hipotermia Profunda , Eletroencefalografia , Animais , Animais Recém-Nascidos , Ponte Cardiopulmonar/métodos , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Masculino , Suínos
11.
Pediatr Res ; 78(3): 304-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25996891

RESUMO

BACKGROUND: Currently two magnetic resonance imaging (MRI) methods have been used to assess periventricular leukomalacia (PVL) severity in infants with congenital heart disease: manual volumetric lesion segmentation and an observational categorical scale. Volumetric classification is labor intensive and the categorical scale is quick but unreliable. We propose the quartered point system (QPS) as a novel, intuitive, time-efficient metric with high interrater agreement. METHODS: QPS is an observational scale that asks the rater to score MRIs on the basis of lesion size, number, and distribution. Pre- and postoperative brain MRIs were obtained on term congenital heart disease infants. Three independent observers scored PVL severity using all three methods: volumetric segmentation, categorical scale, and QPS. RESULTS: One-hundred and thirty-five MRIs were obtained from 72 infants; PVL was seen in 48 MRIs. Volumetric measurements among the three raters were highly concordant (ρc = 0.94-0.96). Categorical scale severity scores were in poor agreement between observers (κ = 0.17) and fair agreement with volumetrically determined severity (κ = 0.26). QPS scores were in very good agreement between observers (κ = 0.82) and with volumetric severity (κ = 0.81). CONCLUSION: QPS minimizes training and sophisticated radiologic analysis and increases interrater reliability. QPS offers greater sensitivity to stratify PVL severity and has the potential to more accurately correlate with neurodevelopmental outcomes.


Assuntos
Cardiopatias Congênitas/fisiopatologia , Leucomalácia Periventricular/fisiopatologia , Imageamento por Ressonância Magnética , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Idade Gestacional , Cardiopatias Congênitas/complicações , Humanos , Recém-Nascido , Leucomalácia Periventricular/diagnóstico , Variações Dependentes do Observador , Período Pós-Operatório , Período Pré-Operatório , Reprodutibilidade dos Testes , Estudos Retrospectivos , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA