Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancers (Basel) ; 16(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398194

RESUMO

Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.

2.
Blood ; 143(18): 1837-1844, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38170173

RESUMO

ABSTRACT: Idiopathic multicentric Castleman disease (iMCD) is a rare cytokine-driven disorder characterized by systemic inflammation, generalized lymphadenopathy, and organ dysfunction. Here, we present an unusual occurrence of iMCD in identical twins and examined the immune milieu within the affected lymphoid organs and the host circulation using multiomic high-dimensional profiling. Using spatial enhanced resolution omics sequencing (Stereo-seq) transcriptomic profiling, we performed unsupervised spatially constrained clustering to identify different anatomic structures, mapping the follicles and interfollicular regions. After a cell segmentation approach, interleukin 6 (IL-6) pathway genes significantly colocalized with endothelial cells and fibroblastic reticular cells, confirming observations using a single-cell sequencing approach (10× Chromium). Furthermore, single-cell sequencing of peripheral blood mononuclear cells revealed an "inflammatory" peripheral monocytosis enriched for the expression of S100A family genes in both twins. In summary, we provided evidence of the putative cell-of-origin of IL-6 signals in iMCD and described a distinct monocytic host immune response phenotype through a unique identical twin model.


Assuntos
Hiperplasia do Linfonodo Gigante , Interleucina-6 , Análise de Célula Única , Gêmeos Monozigóticos , Humanos , Hiperplasia do Linfonodo Gigante/patologia , Hiperplasia do Linfonodo Gigante/genética , Gêmeos Monozigóticos/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Feminino , Doenças em Gêmeos/genética , Doenças em Gêmeos/patologia , Pessoa de Meia-Idade , Perfilação da Expressão Gênica
3.
Lab Invest ; 104(3): 100323, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218317

RESUMO

Recent studies have described several molecular subtypes and deregulation of immuno-oncologic signaling pathways in angiosarcoma. Interestingly, mast cells were enriched in subsets of angiosarcoma, although their significance remains unknown. In this study, we aim to verify this observation using immunohistochemistry (H scores) and NanoString transcriptomic profiling and explore the association between mast cells with clinical and biological features. In the study cohort (N = 60), H scores showed a significant moderate correlation with NanoString mast cell scores (r = 0.525; P < .001). Both H score and NanoString mast cell scores showed a significant positive correlation (P < .05) with head and neck location, nonepithelioid morphology, and lower tumor grade. Mast cell enrichment significantly correlated with higher NanoString regulatory T-cell scores (H score, r = 0.32; P = .01; NanoString mast cell score, r = 0.27; P = .04). NanoString mast cell scores positively correlated with signaling pathways relating to antigen presentation (r = 0.264; P = .0414) and negatively correlated with apoptosis (r = -0.366; P = .0040), DNA damage repair (r = -0.348; P = .0064), and cell proliferation (r = -0.542; P < .001). Interestingly, in the metastatic setting, patients with mast cell-enriched angiosarcoma showed poorer progression-free survival (median, 0.2 vs 0.4 years; hazard ratio = 3.05; P = .0489) along with a trend toward worse overall survival (median, 0.2 vs 0.6 years; hazard ratio, 2.86; P = .0574) compared with patients with mast cell-poor angiosarcoma. In conclusion, we demonstrated the presence of mast cells in human angiosarcoma and provided initial evidence of their potential clinical and biological significance. Future research will be required to elucidate their specific roles and mechanisms, which may uncover novel avenues for therapeutic intervention.


Assuntos
Hemangiossarcoma , Humanos , Hemangiossarcoma/patologia , Hemangiossarcoma/terapia , Mastócitos , Transdução de Sinais , Apoptose , Prognóstico
4.
Hum Cell ; 37(1): 310-322, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070062

RESUMO

Solitary fibrous tumor/Hemangiopericytoma (SFT/HPC) is a rare subtype of soft tissue sarcoma harboring NAB2-STAT6 gene fusions. Mechanistic studies and therapeutic development on SFT/HPC are impeded by scarcity and lack of system models. In this study, we established and characterized a novel SFT/HPC patient-derived cell line (PDC), SFT-S1, and screened for potential drug candidates that could be repurposed for the treatment of SFT/HPC. Immunohistochemistry profiles of the PDC was consistent with the patient's tumor sample (CD99+/CD34+/desmin-). RNA sequencing, followed by Sanger sequencing confirmed the pathognomonic NAB2exon3-STAT6exon18 fusion in both the PDC and the original tumor. Transcriptomic data showed strong enrichment for oncogenic pathways (epithelial-mesenchymal transition, FGF, EGR1 and TGFß signaling pathways) in the tumor. Whole genome sequencing identified potentially pathogenic somatic variants such as MAGEA10 and ABCA2. Among a panel of 14 targeted agents screened, dasatinib was identified to be the most potent small molecule inhibitor against the PDC (IC50, 473 nM), followed by osimertinib (IC50, 730 nM) and sunitinib (IC50, 1765 nM). Methylation profiling of the tumor suggests that this specific variant of SFT/HPC could lead to genome-wide hypomethylation. In conclusion, we established a novel PDC model of SFT/HPC with comprehensive characterization of its genomic, epigenomic and transcriptomic landscape, which can facilitate future preclinical studies of SFT/HPC, such as in vitro drug screening and in vivo drug testing.


Assuntos
Hemangiopericitoma , Tumores Fibrosos Solitários , Humanos , Hemangiopericitoma/genética , Hemangiopericitoma/diagnóstico , Hemangiopericitoma/metabolismo , Tumores Fibrosos Solitários/genética , Tumores Fibrosos Solitários/diagnóstico , Tumores Fibrosos Solitários/patologia , Fusão Gênica , Perfilação da Expressão Gênica , Linhagem Celular
5.
Commun Biol ; 6(1): 461, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106027

RESUMO

Angiosarcomas are rare malignant tumors of the endothelium, arising commonly from the head and neck region (AS-HN) and recently associated with ultraviolet (UV) exposure and human herpesvirus-7 infection. We examined 81 cases of angiosarcomas, including 47 cases of AS-HN, integrating information from whole genome sequencing, gene expression profiling and spatial transcriptomics (10X Visium). In the AS-HN cohort, we observed recurrent somatic mutations in CSMD3 (18%), LRP1B (18%), MUC16 (18%), POT1 (16%) and TP53 (16%). UV-positive AS-HN harbored significantly higher tumor mutation burden than UV-negative cases (p = 0.0294). NanoString profiling identified three clusters with distinct tumor inflammation signature scores (p < 0.001). Spatial transcriptomics revealed topological profiles of the tumor microenvironment, identifying dominant but tumor-excluded inflammatory signals in immune-hot cases and immune foci even in otherwise immune-cold cases. In conclusion, spatial transcriptomics reveal the tumor immune landscape of angiosarcoma, and in combination with multi-omic information, may improve implementation of treatment strategies.


Assuntos
Hemangiossarcoma , Humanos , Hemangiossarcoma/genética , Hemangiossarcoma/metabolismo , Hemangiossarcoma/patologia , Transcriptoma , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
6.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887186

RESUMO

The field of immuno-oncology is now at the forefront of cancer care and is rapidly evolving. The immune checkpoint blockade has been demonstrated to restore antitumor responses in several cancer types. However, durable responses can be observed only in a subset of patients, highlighting the importance of investigating the tumor microenvironment (TME) and cellular heterogeneity to define the phenotypes that contribute to resistance as opposed to those that confer susceptibility to immune surveillance and immunotherapy. In this review, we summarize how some of the most widely used conventional technologies and biomarkers may be useful for the purpose of predicting immunotherapy outcomes in patients, and discuss their shortcomings. We also provide an overview of how emerging single-cell spatial omics may be applied to further advance our understanding of the interactions within the TME, and how these technologies help to deliver important new insights into biomarker discovery to improve the prediction of patient response.


Assuntos
Imunoterapia , Neoplasias , Biomarcadores Tumorais , Humanos , Imunidade , Imunoterapia/métodos , Neoplasias/genética , Microambiente Tumoral
7.
Front Oncol ; 12: 840843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273917

RESUMO

Liquid biopsy circulating tumor DNA (ctDNA)-based approaches may represent a non-invasive means for molecular interrogation of gastrointestinal stromal tumors (GISTs). We deployed a customized 29-gene Archer® LiquidPlex™ targeted panel on 64 plasma samples from 46 patients. The majority were known to harbor KIT mutations (n = 41, 89.1%), while 3 were PDGFRA exon 18 D842V mutants and the rest (n = 2) were wild type for KIT and PDGFRA. In terms of disease stage, 14 (30.4%) were localized GISTs that had undergone complete surgical resection while the rest (n = 32) were metastatic. Among ten patients, including 7 on tyrosine kinase inhibitors, with evidence of disease progression at study inclusion, mutations in ctDNA were detected in 7 cases (70%). Known somatic mutations in KIT (n = 5) or PDGFRA (n = 1) in ctDNA were identified only among 6 of the 10 patients. These KIT mutants included duplication, indels, and single-nucleotide variants. The median mutant AF in ctDNA was 11.0% (range, 0.38%-45.0%). In patients with metastatic progressive KIT-mutant GIST, tumor burden was higher with detectable KIT ctDNA mutation than in those without (median, 5.97 cm vs. 2.40 cm, p = 0.0195). None of the known tumor mutations were detected in ctDNA for localized cases (n = 14) or metastatic cases without evidence of disease progression (n = 22). In patients with serial samples along progression of disease, secondary acquired mutations, including a potentially actionable PIK3CA exon 9 c.1633G>A mutation, were detected. ctDNA mutations were not detectable when patients responded to a switch in TKI therapy. In conclusion, detection of GIST-related mutations in ctDNA using a customized targeted NGS panel represents an attractive non-invasive means to obtain clinically tractable information at the time of disease progression.

9.
Blood ; 135(26): 2337-2353, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32157296

RESUMO

Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using whole-genome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRC-driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine+PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP.


Assuntos
Crise Blástica/genética , Regulação Leucêmica da Expressão Gênica/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Complexo Repressor Polycomb 1/fisiologia , Complexo Repressor Polycomb 2/fisiologia , Diferenciação Celular , Imunoprecipitação da Cromatina , Metilação de DNA , Conjuntos de Dados como Assunto , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Dosagem de Genes , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Transcriptoma , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
10.
Cancer Sci ; 111(2): 561-570, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31782583

RESUMO

Patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) harboring BIM deletion polymorphism (BIM deletion) have poor responses to EGFR TKI. Mechanistically, the BIM deletion induces preferential splicing of the non-functional exon 3-containing isoform over the functional exon 4-containing isoform, impairing TKI-induced, BIM-dependent apoptosis. Histone deacetylase inhibitor, vorinostat, resensitizes BIM deletion-containing NSCLC cells to EGFR-TKI. In the present study, we determined the safety of vorinostat-gefitinib combination and evaluated pharmacodynamic biomarkers of vorinostat activity. Patients with EGFR-mutated NSCLC with the BIM deletion, pretreated with EGFR-TKI and chemotherapy, were recruited. Vorinostat (200, 300, 400 mg) was given daily on days 1-7, and gefitinib 250 mg was given daily on days 1-14. Vorinostat doses were escalated based on a conventional 3 + 3 design. Pharmacodynamic markers were measured using PBMC collected at baseline and 4 hours after vorinostat dose on day 2 in cycle 1. No dose-limiting toxicities (DLT) were observed in 12 patients. We determined 400 mg vorinostat as the recommended phase II dose (RP2D). Median progression-free survival was 5.2 months (95% CI: 1.4-15.7). Disease control rate at 6 weeks was 83.3% (10/12). Vorinostat preferentially induced BIM mRNA-containing exon 4 over mRNA-containing exon 3, acetylated histone H3 protein, and proapoptotic BIMEL protein in 11/11, 10/11, and 5/11 patients, respectively. These data indicate that RP2D was 400 mg vorinostat combined with gefitinib in BIM deletion/EGFR mutation double-positive NSCLC. BIM mRNA exon 3/exon 4 ratio in PBMC may be a useful pharmacodynamic marker for treatment.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Gefitinibe/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Vorinostat/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/genética , Esquema de Medicação , Receptores ErbB/genética , Feminino , Gefitinibe/farmacocinética , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação , Deleção de Sequência , Análise de Sobrevida , Resultado do Tratamento , Vorinostat/farmacocinética
11.
PLoS One ; 12(3): e0174107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301600

RESUMO

Chronic myeloid leukemia (CML) treatment has been improved by tyrosine kinase inhibitors (TKIs) such as imatinib mesylate (IM) but various factors can cause TKI resistance in patients with CML. One factor which contributes to TKI resistance is a germline intronic deletion polymorphism in the BCL2-like 11 (BIM) gene which impairs the expression of pro-apoptotic splice isoforms of BIM. SB939 (pracinostat) is a hydroxamic acid based HDAC inhibitor with favorable pharmacokinetic, physicochemical and pharmaceutical properties, and we investigated if this drug could overcome BIM deletion polymorphism-induced TKI resistance. We found that SB939 corrects BIM pre-mRNA splicing in CML cells with the BIM deletion polymorphism, and induces apoptotic cell death in CML cell lines and primary cells with the BIM deletion polymorphism. More importantly, SB939 both decreases the viability of CML cell lines and primary CML progenitors with the BIM deletion and restores TKI-sensitivity. Our results demonstrate that SB939 overcomes BIM deletion polymorphism-induced TKI resistance, and suggest that SB939 may be useful in treating CML patients with BIM deletion-associated TKI resistance.


Assuntos
Antineoplásicos/farmacologia , Proteína 11 Semelhante a Bcl-2/genética , Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Deleção de Genes , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Apoptose/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Splicing de RNA
12.
Oncotarget ; 7(3): 2721-33, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26517680

RESUMO

Both germline polymorphisms and tumor-specific genetic alterations can determine the response of a cancer to a given therapy. We previously reported a germline deletion polymorphism in the BIM gene that was sufficient to mediate intrinsic resistance to tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), as well as other cancers [1]. The deletion polymorphism favored the generation of BIM splice forms lacking the pro-apoptotic BH3 domain, conferring a relative resistance to the TKI imatinib (IM). However, CML patients with the BIM deletion polymorphism developed both partial and complete IM resistance. To understand the mechanisms underlying the latter, we grew CML cells either with or without the BIM deletion polymorphism in increasing IM concentrations. Under these conditions, the BIM deletion polymorphism enhanced the emergence of populations with complete IM resistance, mimicking the situation in patients. Importantly, the combined use of TKIs with the BH3 mimetic ABT-737 overcame the BCR-ABL1-dependent and -independent resistance mechanisms found in these cells. Our results illustrate the interplay between germline and acquired genetic factors in confering TKI resistance, and suggest a therapeutic strategy for patients with complete TKI resistance associated with the BIM deletion polymorphism.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Compostos de Bifenilo/farmacologia , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas de Membrana/genética , Nitrofenóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Deleção de Genes , Humanos , Piperazinas/farmacologia , Polimorfismo Genético , Pirimidinas/farmacologia
14.
Oncotarget ; 5(19): 9033-8, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25333252

RESUMO

BCR-ABL1-specific tyrosine kinase inhibitors prolong the life of patients with chronic myeloid leukemia (CML) but cannot completely eradicate CML progenitors. The BH3 mimetic, ABT-263, targets prosurvival BCL2 family members, and has activity against CML progenitors. However, the inhibitory effect of ABT-263 on BCL-XL, which mediates platelet survival, produces dose-limiting thrombocytopenia. A second-generation BH3 mimetic, ABT-199, has been developed to specifically bind BCL2 but not BCL-XL. We determined the activity of ABT-199 against CML cell lines, as well as primary CML and normal cord blood (NCB) progenitors. We find that BCL2 expression levels predict sensitivity to ABT-199 in CML and NCB progenitors, and that high NCB BCL2 levels may explain the reported hematologic toxicities in ABT-199-treated patients. Also, while single agent ABT-199 has modest activity against CML progenitors, when combined with imatinib, ABT-199 significantly enhances imatinib activity against CML progenitors at concentrations predicted to avoid hematologic toxicities.


Assuntos
Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Mesilato de Imatinib , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ensaio Tumoral de Célula-Tronco
15.
Nat Med ; 18(4): 521-8, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426421

RESUMO

Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual's response to TKIs. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the B-cell CLL/lymphoma 2 (BCL2) family of proteins, and its upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from exon 4 to exon 3, which resulted in expression of BIM isoforms lacking the pro-apoptotic BCL2-homology domain 3 (BH3). The polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, but this resistance could be overcome with BH3-mimetic drugs. Notably, individuals with CML and EGFR NSCLC harboring the polymorphism experienced significantly inferior responses to TKIs than did individuals without the polymorphism (P = 0.02 for CML and P = 0.027 for EGFR NSCLC). Our results offer an explanation for the heterogeneity of TKI responses across individuals and suggest the possibility of personalizing therapy with BH3 mimetics to overcome BIM-polymorphism-associated TKI resistance.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Polimorfismo Genético/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Deleção de Sequência/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anexinas/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína 11 Semelhante a Bcl-2 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Estudos de Coortes , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Ensaio de Imunoadsorção Enzimática/métodos , Receptores ErbB/genética , Éxons/genética , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Frequência do Gene , Genótipo , Humanos , Cooperação Internacional , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Estatísticas não Paramétricas , Transfecção
16.
Gastroenterology ; 138(1): 255-65.e1-3, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19706291

RESUMO

BACKGROUND & AIMS: The transcription factor RUNX3 is a gastric tumor suppressor. Tumorigenic Runx3(-/-) gastric epithelial cells attach weakly to each other, compared with nontumorigenic Runx3(+/+) cells. We aimed to identify RUNX3 target genes that promote cell-cell contact to improve our understanding of RUNX3's role in suppressing gastric carcinogenesis. METHODS: We compared gene expression profiles of Runx3(+/+) and Runx3(-/-) cells and observed down-regulation of genes associated with cell-cell adhesion in Runx3(-/-) cells. Reporter, mobility shift, and chromatin immunoprecipitation assays were used to examine the regulation of these genes by RUNX3. Tumorigenesis assays and immunohistological analyses of human gastric tumors were performed to confirm the role of the candidate genes in gastric tumor development. RESULTS: Mobility shift and chromatin immunoprecipitation assays revealed that the promoter activity of the gene that encodes the tight junction protein claudin-1 was up-regulated via the binding of RUNX3 to the RUNX consensus sites. The tumorigenicity of gastric epithelial cells from Runx3(-/-) mice was significantly reduced by restoration of claudin-1 expression, whereas knockdown of claudin-1 increased the tumorigenicity of human gastric cancer cells. Concomitant expression of RUNX3 and claudin-1 was observed in human normal gastric epithelium and cancers. CONCLUSIONS: The tight junction protein claudin-1 has gastric tumor suppressive activity and is a direct transcriptional target of RUNX3. Claudin-1 is down-regulated during the epithelial-mesenchymal transition; RUNX3 might therefore act as a tumor suppressor to antagonize the epithelial-mesenchymal transition.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Claudina-1 , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Regulação para Baixo/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Genes Reporter , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Transplante de Neoplasias , Estômago/patologia , Junções Íntimas/metabolismo , Transplante Heterólogo
17.
Cancer Res ; 66(13): 6512-20, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16818622

RESUMO

A tumor suppressor function has been attributed to RUNX3, a member of the RUNX family of transcription factors. Here, we examined alterations in the expression of three members, RUNX1, RUNX2, and RUNX3, and their interacting partner, CBF-beta, in breast cancer. Among them, RUNX3 was consistently underexpressed in breast cancer cell lines and primary tumors. Fifty percent of the breast cancer cell lines (n = 19) showed hypermethylation at the promoter region and displayed significantly lower levels of RUNX3 mRNA expression (P < 0.0001) and protein (P < 0.001). In primary Singaporean breast cancers, 9 of 44 specimens showed undetectable levels of RUNX3 by immunohistochemistry. In 35 of 44 tumors, however, low levels of RUNX3 protein were present. Remarkably, in each case, protein was mislocalized to the cytoplasm. In primary tumors, hypermethylation of RUNX3 was observed in 23 of 44 cases (52%) and was undetectable in matched adjacent normal breast epithelium. Mislocalization of the protein, with or without methylation, seems to account for RUNX3 inactivation in the vast majority of the tumors. In in vitro and in vivo assays, RUNX3 behaved as a growth suppressor in breast cancer cells. Stable expression of RUNX3 in MDA-MB-231 breast cancer cells led to a more cuboidal phenotype, significantly reduced invasiveness in Matrigel invasion assays, and suppressed tumor formation in immunodeficient mice. This study provides biological and mechanistic insights into RUNX3 as the key member of the family that plays a role in breast cancer. Frequent protein mislocalization and methylation could render RUNX3 a valuable marker for early detection and risk assessment.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Subunidade alfa 3 de Fator de Ligação ao Core/deficiência , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Metilação de DNA , Decitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcação de Genes , Genes Supressores de Tumor , Humanos , Ácidos Hidroxâmicos/farmacologia , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA