Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672191

RESUMO

NEK6 is a central kinase in developing castration-resistant prostate cancer (CRPC). However, the pathways regulated by NEK6 in CRPC are still unclear. Cancer cells have high reactive oxygen species (ROS) levels and easily adapt to this circumstance and avoid cell death by increasing antioxidant defenses. We knocked out the NEK6 gene and evaluated the redox state and DNA damage response in DU-145 cells. The knockout of NEK6 decreases the clonogenic capacity, proliferation, cell viability, and mitochondrial activity. Targeting the NEK6 gene increases the level of intracellular ROS; decreases the expression of antioxidant defenses (SOD1, SOD2, and PRDX3); increases JNK phosphorylation, a stress-responsive kinase; and increases DNA damage markers (p-ATM and γH2AX). The exogenous overexpression of NEK6 also increases the expression of these same antioxidant defenses and decreases γH2AX. The depletion of NEK6 also induces cell death by apoptosis and reduces the antiapoptotic Bcl-2 protein. NEK6-lacking cells have more sensitivity to cisplatin. Additionally, NEK6 regulates the nuclear localization of NF-κB2, suggesting NEK6 may regulate NF-κB2 activity. Therefore, NEK6 alters the redox balance, regulates the expression of antioxidant proteins and DNA damage, and its absence induces the death of DU-145 cells. NEK6 inhibition may be a new strategy for CRPC therapy.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antioxidantes/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Oxirredução , Dano ao DNA , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo
2.
Cell Commun Signal ; 20(1): 197, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550548

RESUMO

Specific members of the Nima-Related Kinase (NEK) family have been linked to cancer development and progression, and a role for NEK5, one of the least studied members, in breast cancer has recently been proposed. However, while NEK5 is known to regulate centrosome separation and mitotic spindle assembly, NEK5 signalling mechanisms and function in this malignancy require further characterization. To this end, we established a model system featuring overexpression of NEK5 in the immortalized breast epithelial cell line MCF-10A. MCF-10A cells overexpressing NEK5 exhibited an increase in clonogenicity under monolayer conditions and enhanced acinar size and abnormal morphology in 3D Matrigel culture. Interestingly, they also exhibited a marked reduction in Src activation and downstream signalling. To interrogate NEK5 signalling and function in an unbiased manner, we applied a variety of MS-based proteomic approaches. Determination of the NEK5 interactome by Bio-ID identified a variety of protein classes including the kinesins KIF2C and KIF22, the mitochondrial proteins TFAM, TFB2M and MFN2, RhoH effectors and the negative regulator of Src, CSK. Characterization of proteins and phosphosites modulated upon NEK5 overexpression by global MS-based (phospho)proteomic profiling revealed impact on the cell cycle, DNA synthesis and repair, Rho GTPase signalling, the microtubule cytoskeleton and hemidesmosome assembly. Overall, the study indicates that NEK5 impacts diverse pathways and processes in breast epithelial cells, and likely plays a multifaceted role in breast cancer development and progression. Video Abstract.


Assuntos
Neoplasias da Mama , Proteômica , Humanos , Feminino , Quinases Relacionadas a NIMA/metabolismo , Linhagem Celular , Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a DNA , Cinesinas
3.
Chem Biodivers ; 19(5): e202200102, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35362194

RESUMO

Prostate cancer is the second most common malignancy in men and the development of effective therapeutic strategies remains challenging when more advanced, androgen-independent or insensitive forms are involved. Accordingly, we have evaluated, using flow cytometry, confocal microscopy and image analysis, the anti-proliferative effects of (+)-2,3,9-trimethoxypterocarpan [(+)-PTC, 1] on relevant human prostate cancer cells as well as its capacity to control mitosis within them. In particular, the studies reported herein reveal that (+)-PTC exerts anti-proliferative activity against the PC-3 cell lines by regulating cell-cycle progression with mitosis being arrested in the prophase or prometaphase. Furthermore, it emerges that treatment of the target cells with this compound results in the formation of monopolar spindles, disorganized centrosomes and extensively disrupted γ-tubulin distributions while centriole replication remains unaffected. Such effects suggest (+)-PTC should be considered as a possible therapy for androgen-insensitive/independent prostate cancer.


Assuntos
Microtúbulos , Neoplasias da Próstata , Androgênios , Linhagem Celular , Humanos , Masculino , Mitose , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
4.
FEBS J ; 289(11): 3262-3279, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34986513

RESUMO

Nek4 is a serine/threonine kinase which has been implicated in primary cilia stabilization, DNA damage response, autophagy and epithelial-to-mesenchymal transition. The role of Nek4 in cancer cell survival and chemotherapy resistance has also been shown. However, the precise mechanisms by which Nek4 operates remain to be elucidated. Here, we show that Nek4 overexpression activates mitochondrial respiration coupled to ATP production, which is paralleled by increased mitochondrial membrane potential, and resistance to mitochondrial DNA damage. Congruently, Nek4 depletion reduced mitochondrial respiration and mtDNA integrity. Nek4 deficiency caused mitochondrial elongation, probably via reduced activity of the fission protein DRP1. In Nek4 overexpressing cells, the increase in mitochondrial fission was concomitant to enhanced phosphorylation of DRP1 and Erk1/2 proteins, and the effects on mitochondrial respiration were abolished in the presence of a DRP1 inhibitor. This study shows Nek4 as a novel regulator of mitochondrial function that may explain the joint appearance of high mitochondrial respiration and mitochondrial fragmentation.


Assuntos
Dinaminas , Dinâmica Mitocondrial , DNA Mitocondrial/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Fosforilação , Respiração
5.
J Vis Exp ; (170)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33970143

RESUMO

mRNA processing involves multiple simultaneous steps to prepare mRNA for translation, such as 5´capping, poly-A addition and splicing. Besides constitutive splicing, alternative mRNA splicing allows the expression of multifunctional proteins from one gene. As interactome studies are generally the first analysis for new or unknown proteins, the association of the bait protein with splicing factors is an indication that it can participate in mRNA splicing process, but to determine in what context or what genes are regulated is an empirical process. A good starting point to evaluate this function is using the classical minigene tool. Here we present the adenoviral E1A minigene usage for evaluating the alternative splicing changes after different cellular stress stimuli. We evaluated the splicing of E1A minigene in HEK293 stably overexpressing Nek4 protein after different stressing treatments. The protocol includes E1A minigene transfection, cell treatment, RNA extraction and cDNA synthesis, followed by PCR and gel analysis and quantification of the E1A spliced variants. The use of this simple and well-established method combined with specific treatments is a reliable starting point to shed light on cellular processes or what genes can be regulated by mRNA splicing.


Assuntos
Processamento Alternativo , RNA Mensageiro/genética , DNA Complementar/genética , Células HEK293 , Humanos , Mutação , Transfecção
6.
Cells ; 10(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673578

RESUMO

NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIß, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Humanos
7.
FEBS Open Bio ; 11(3): 546-563, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547867

RESUMO

Little is known about Nima-related kinase (NEKs), a widely conserved family of kinases that have key roles in cell-cycle progression. Nevertheless, it is now clear that multiple NEK family members act in networks, not only to regulate specific events of mitosis, but also to regulate metabolic events independently of the cell cycle. NEK5 was shown to act in centrosome disjunction, caspase-3 regulation, myogenesis, and mitochondrial respiration. Here, we demonstrate that NEK5 interacts with LonP1, an AAA+ mitochondrial protease implicated in protein quality control and mtDNA remodeling, within the mitochondria and it might be involved in the LonP1-TFAM signaling module. Moreover, we demonstrate that NEK5 kinase activity is required for maintaining mitochondrial mass and functionality and mtDNA integrity after oxidative damage. Taken together, these results show a new role of NEK5 in the regulation of mitochondrial homeostasis and mtDNA maintenance, possibly due to its interaction with key mitochondrial proteins, such as LonP1.


Assuntos
Proteases Dependentes de ATP/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Linhagem Celular , Variações do Número de Cópias de DNA , Regulação da Expressão Gênica , Células HEK293 , Humanos , Mitocôndrias/genética , Quinases Relacionadas a NIMA/genética , Estresse Oxidativo , Mapas de Interação de Proteínas
8.
Oncotarget ; 11(46): 4325-4337, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33245729

RESUMO

Hyaluronic Acid-binding protein 4 (HABP4) is a regulatory protein of 57 kDa that is functionally involved in transcription regulation and RNA metabolism and shows several characteristics common to oncoproteins or tumor suppressors, including altered expression in cancer tissues, nucleus/cytoplasm shuttling, intrinsic lack of protein structure, complex interactomes and post translational modifications. Its gene has been found in a region on chromosome 9q22.3-31, which contains SNP haplotypes occurring in individuals with a high risk for familial colon cancer. To test a possible role of HABP4 in tumorigenesis we generated knockout mice by the CRISPR/Cas9 method and treated the animals with azoxymethane (AOM)/dextran sodium sulfate (DSS) for induction of colon tumors. HABP4-/- mice, compared to wild type mice, had more and larger tumors, and expressed more of the proliferation marker proteins Cyclin-D1, CDK4 and PCNA. Furthermore, the cells of the bottom of the colon crypts in the HABP4-/- mice divided more rapidly. Next, we generated also HABP4-/- HCT 116 cells, in cell culture and found again an increased proliferation in clonogenic assays in comparison to wild-type cells. Our study of the protein expression levels of HABP4 in human colon cancer samples, through immunohistochemistry assays, showed, that 30% of the tumors analyzed had low expression of HABP4. Our data suggest that HABP4 is involved in proliferation regulation of colon cells in vitro and in vivo and that it is a promising new candidate for a tumor suppressor protein that can be explored both in the diagnosis and possibly therapy of colon cancer.

9.
Molecules ; 25(8)2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32294979

RESUMO

In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.


Assuntos
Doenças do Sistema Nervoso Central/enzimologia , Ciliopatias/enzimologia , Diabetes Mellitus/enzimologia , Inflamação/enzimologia , Quinases Relacionadas a NIMA/metabolismo , Neoplasias/enzimologia , Animais , Proteínas de Ciclo Celular/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Ciliopatias/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Inflamação/metabolismo , Quinases Relacionadas a NIMA/antagonistas & inibidores , Quinases Relacionadas a NIMA/genética , Neoplasias/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/genética
10.
BMC Cancer ; 20(1): 23, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906878

RESUMO

BACKGROUND: The NEK serine/threonine protein kinases are involved in cell cycle checkpoints, DNA damage repair, and apoptosis. Alterations in these pathways are frequently associated with cell malignant cellular transformations. Thyroid cancer is the most common malignant tumour in the endocrine system. Despite good treatment methods, the number of cases has increased significantly in recent years. Here, we studied the expression of NEK1, NEK2, NEK3, and NEK5 in different types of normal and malignant tissues, using tissue microarray analysis, and identified NEKs as potential markers in thyroid malignancy. METHODS: The studied cases comprised multiple cancer tissue microarrays, including breast, colon, esophagus, kidney, lung, pancreas, prostate, stomach, thyroid and uterine cervix, as well as 281 patients who underwent thyroid resection for thyroid cancer or thyroid nodules. The expression of NEK1, NEK2, NEK3, and NEK5 was analyzed by immunohistochemistry. The expression pattern was evaluated in terms of intensity by two methods, semiquantitative and quantitative, and was compared between normal and cancer tissue. RESULTS: We analysed the expression of each member of the NEK family in a tissue-dependent manner. Compared to normal tissue, most of the evaluated proteins showed lower expression in lung tumour. However, in the thyroid, the expression was higher in malignant tissue, especially for NEK 1, NEK3 and NEK5. Concerning characteristics of the thyroid tumour, such as aggressiveness, NEK1 expression was higher in tumours with multifocality and in patients with lymph node metastasis. NEK3 expression was stronger in patients with stage II, that involved metastasis. NEK5, on the other hand, showed high expression in patients with invasion and metastasis and in patients with tumour size > 4 cm. Furthermore, this work, demonstrated for the first time a high specificity and sensitivity of over-expression of NEK1 in classical and follicular variants of papillary thyroid cancer and NEK3 in tall-cell papillary thyroid cancer. CONCLUSION: Taken together, the NEK protein kinases emerge as important proteins in thyroid cancer development and may help to identify malignancy and aggressiveness features during diagnosis. TRIAL REGISTRATION: This study was retrospectively registered.  www.accamargo.org.br/cientistas-pesquisadores/comite-de-etica-em-pequisa-cep.


Assuntos
Quinases Relacionadas a NIMA/metabolismo , Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/enzimologia , Adulto , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Quinase 1 Relacionada a NIMA/metabolismo , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia
11.
World J Biol Chem ; 10(3): 44-64, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31768228

RESUMO

The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.

12.
Int J Biol Macromol ; 137: 205-214, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31229549

RESUMO

The serine/arginine-rich protein kinase 2 (SRPK2) has been reported as upregulated in several cancer types, with roles in hallmarks such as cell migration, growth, and apoptosis. These findings have indicated that SRPK2 is a promising emerging target in drug discovery initiatives. Although high-resolution models are available for SRPK2 (PDB 2X7G), they have been obtained with a heavily truncated recombinant protein version (~50% of the primary structure), due to the presence of long intrinsically unstructured regions. In the present work, we sought to characterize the structure of a full-length recombinant version of SRPK2 in solution. Low-resolution Small-Angle X-ray Scattering data were obtained for both versions of SRPK2. The truncated ΔNΔS-SRPK2 presented a propensity to dimerize at higher concentrations whereas the full-length SRPK2 was mainly found as dimers. The hydrodynamic behavior of the full-length SRPK2 was further investigated by analytical size exclusion chromatography and sedimentation velocity analytical ultracentrifugation experiments. SRPK2 behaved as a monomer-dimer equilibrium and both forms have an elongated shape in solution, pointing to a stretched-to-closed tendency among the conformational plasticity observed. Taken together, these findings allowed us to define unique structural features of the SRPK2 within SRPK family, characterized by its flexible regions outside the bipartite kinase domain.


Assuntos
Hidrodinâmica , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Soluções , Análise Espectral , Relação Estrutura-Atividade
13.
J Cell Biochem ; 120(10): 16853-16866, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31090963

RESUMO

Cells are daily submitted to high levels of DNA lesions that trigger complex pathways and cellular responses by cell cycle arrest, apoptosis, alterations in transcriptional response, and the onset of DNA repair. Members of the NIMA-related kinase (NEK) family have been related to DNA damage response and repair and the first insight about NEK5 in this context is related to its role in centrosome separation resulting in defects in chromosome integrity. Here we investigate the potential correlation between NEK5 and the DNA damage repair index. The effect of NEK5 in double-strand breaks caused by etoposide was accessed by alkaline comet assay and revealed that NEK5-silenced cells are more sensitive to etoposide treatment. Topoisomerase IIß (TOPIIß) is a target of etoposide that leads to the production of DNA breaks. We demonstrate that NEK5 interacts with TOPIIß, and the dynamics of this interaction is evaluated by proximity ligation assay. The complex NEK5/TOPIIß is formed immediately after etoposide treatment. Taken together, the results of our study reveal that NEK5 depletion increases DNA damage and impairs proper DNA damage response, pointing out NEK5 as a potential kinase contributor to genomic stability.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Quinases Relacionadas a NIMA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , DNA/genética , Células HEK293 , Humanos , Quinases Relacionadas a NIMA/genética , Interferência de RNA , RNA Interferente Pequeno/genética
14.
FEBS Open Bio ; 8(1): 4-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321952

RESUMO

Fasciculation and elongation zeta-1 (FEZ1) protein is involved in axon outgrowth and is highly expressed in the brain. It has multiple interaction partners, with functions varying from the regulation of neuronal development and intracellular transport mechanisms to transcription regulation. One of its interactors is retinoic acid receptor (RAR), which is activated by retinoic acid and controls many target genes and physiological process. Based on previous evidence suggesting a possible nuclear role for FEZ1, we wanted to deepen our understanding of this function by addressing the FEZ1-RAR interaction. We performed in vitro binding experiments and assessed the interface of interaction between both proteins. We found that FEZ1-RAR interacted with a similar magnitude as RAR to its responsive element DR5 and that the interaction occurred in the coiled-coil region of FEZ1 and in the ligand-binding domain of RAR. Furthermore, cellular experiments were performed in order to confirm the interaction and screen for induced target genes from an 86-gene panel. The analysis of gene expression showed that only in the presence of retinoic acid did FEZ1 induce hoxb4 gene expression. This finding is consistent with data from the literature showing the hoxb4 gene functionally involved in development and acute myeloid leukemia, as is FEZ1.

15.
Sci Rep ; 7(1): 14843, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093500

RESUMO

ABSTARCT: This work explores a new class of vortex/magnetite/iron oxide nanoparticles designed for magnetic hyperthermia applications. These nanoparticles, named Vortex Iron oxide Particles (VIPs), are an alternative to the traditional Superparamagnetic Iron Oxide Nanoparticles (SPIONs), since VIPs present superior heating power while fulfilling the main requirements for biomedical applications (low cytotoxicity and nonremanent state). In addition, the present work demonstrates that the synthesized VIPs also promote an internalization and aggregation of the particles inside the cell, resulting in a highly localized hyperthermia in the presence of an alternating magnetic field. Thereby, we demonstrate a new and efficient magnetic hyperthermia strategy in which a small, but well localized, concentration of VIPs can promote an intracellular hyperthermia process.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/terapia , Sobrevivência Celular , Compostos Férricos/síntese química , Células HEK293 , Humanos , Campos Magnéticos , Magnetismo , Nanopartículas de Magnetita/química , Microscopia
16.
J Proteome Res ; 16(9): 3147-3157, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695742

RESUMO

Ki-1/57 is a nuclear and cytoplasmic regulatory protein first identified in malignant cells from Hodgkin's lymphoma. It is involved in gene expression regulation on both transcriptional and mRNA metabolism levels. Ki-1/57 belongs to the family of intrinsically unstructured proteins and undergoes phosphorylation by PKC and methylation by PRMT1. Previous characterization of its protein interaction profile by yeast two-hybrid screening showed that Ki-1/57 interacts with proteins of the SUMOylation machinery, the SUMO E2 conjugating enzyme UBC9 and the SUMO E3 ligase PIAS3, which suggested that Ki-1/57 could be involved with this process. Here we identified seven potential SUMO target sites (lysine residues) on Ki-1/57 sequence and observed that Ki-1/57 is modified by SUMO proteins in vitro and in vivo. We showed that SUMOylation of Ki-1/57 occurred on lysines 213, 276, and 336. In transfected cells expressing FLAG-Ki-1/57 wild-type, its paralog FLAG-CGI-55 wild-type, or their non-SUMOylated triple mutants, the number of PML-nuclear bodies (PML-NBs) is reduced compared with the control cells not expressing the constructs. More interestingly, after treating cells with arsenic trioxide (As2O3), the number of PML-NBs is no longer reduced when the non-SUMOylated triple mutant Ki-1/57 is expressed, suggesting that the SUMOylation of Ki-1/57 has a role in the control of As2O3-induced PML-NB formation. A proteome-wide analysis of Ki-1/57 partners in the presence of either SUMO-1 or SUMO-2 suggests that the involvement of Ki-1/57 with the regulation of gene expression is independent of the presence of either SUMO-1 or SUMO-2; however, the presence of SUMO-1 strongly influences the interaction of Ki-1/57 with proteins associated with cellular metabolism, maintenance, and cell cycle.


Assuntos
Fatores de Regulação Miogênica/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Trióxido de Arsênio , Arsenicais/farmacologia , Ciclo Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina , Fatores de Regulação Miogênica/genética , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Óxidos/farmacologia , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Transcrição Gênica
17.
Sci Rep ; 7(1): 5445, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710492

RESUMO

NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Reparo do DNA , Quinase 1 Relacionada a NIMA/química , Inibidores de Proteínas Quinases/química , Antineoplásicos/química , Sítios de Ligação , Cisplatino/química , Clonagem Molecular , Cristalografia por Raios X , Dano ao DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Quinase 1 Relacionada a NIMA/antagonistas & inibidores , Quinase 1 Relacionada a NIMA/genética , Quinase 1 Relacionada a NIMA/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
18.
BMC Biochem ; 18(1): 12, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724347

RESUMO

BACKGROUND: Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP. METHODS: Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP. RESULTS: In this work we used, after several optimization reactions, creatine kinase isoforms as well as NEK7 protein kinase in the absence or presence of ATP analogous inhibitors  to validate this new luminescence method. CONCLUSION: With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme.


Assuntos
Creatina Quinase/análise , Luciferases/análise , Medições Luminescentes/métodos , Quinases Relacionadas a NIMA/análise , Proteínas Quinases/análise , Trifosfato de Adenosina/química , Animais , Brasil , Luciferina de Vaga-Lumes/química , Luminescência , Medições Luminescentes/normas
19.
Langmuir ; 32(13): 3217-25, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26930039

RESUMO

The selective action of drugs in tumor cells is a major problem in cancer therapy. Most chemotherapy drugs act nonspecifically and damage both cancer and healthy cells causing various side effects. In this study, the preparation of a selective drug delivery system, which is able to act as a carrier for hydrophobic and anticancer drugs is reported. Amino-functionalized silica nanoparticles loaded with curcumin were successfully synthesized via sol-gel approach and duly characterized. Thereafter, the targeting ligand, folate, was covalently attached to amino groups of nanoparticle surface through amide bond formation. The cytotoxic effect of nanoparticles on prostate cancer cells line was evaluated and compared to normal cells line (prostate epithelial cell). Cytotoxicity experiments demonstrated that folate-functionalized nanoparticles were significantly cytotoxic to tumor cells, whereas normal cells were much less affected by the presence of these structures.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Portadores de Fármacos/síntese química , Nanopartículas/química , Dióxido de Silício/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Curcumina/toxicidade , Dimetil Sulfóxido , Portadores de Fármacos/toxicidade , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Ácido Fólico/toxicidade , Humanos , Nanopartículas/toxicidade , Tamanho da Partícula , Propilaminas/química , Propilaminas/toxicidade , Dióxido de Silício/síntese química , Dióxido de Silício/toxicidade
20.
PLoS One ; 10(8): e0134882, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244849

RESUMO

Dysregulation of pre-mRNA splicing machinery activity has been related to the biogenesis of several diseases. The serine/arginine-rich protein kinase family (SRPKs) plays a critical role in regulating pre-mRNA splicing events through the extensive phosphorylation of splicing factors from the family of serine/arginine-rich proteins (SR proteins). Previous investigations have described the overexpression of SRPK1 and SRPK2 in leukemia and other cancer types, suggesting that they would be useful targets for developing novel antitumor strategies. Herein, we evaluated the effect of selective pharmacological SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340) on the viability of lymphoid and myeloid leukemia cell lines. Along with significant cytotoxic activity, the effect of treatments in regulating the phosphorylation of the SR protein family and in altering the expression of MAP2K1, MAP2K2, VEGF and FAS genes were also assessed. Furthermore, we found that pharmacological inhibition of SRPKs can trigger early and late events of apoptosis. Finally, intrinsic tryptophan fluorescence emission, molecular docking and molecular dynamics were analyzed to gain structural information on the SRPK/SRPIN340 complex. These data suggest that SRPK pharmacological inhibition should be considered as an alternative therapeutic strategy for fighting leukemias. Moreover, the obtained SRPK-ligand interaction data provide useful structural information to guide further medicinal chemistry efforts towards the development of novel drug candidates.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Niacinamida/análogos & derivados , Piperidinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Células HeLa , Humanos , Células Jurkat , Células K562 , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacologia , Piperidinas/química , Piperidinas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA