Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32140, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38882312

RESUMO

The anti-viral properties of a small (≈1 kDa), novel Ru(II) photo dynamic compound (PDC), referred to as TLD-1433 (Ruvidar™), are presented. TLD-1433 had previously been demonstrated to exert strong anti-bacterial and anti-cancer properties. We evaluated the capacity of TLD-1433 to inactivate several human pathogenic viruses. TLD-1433 that was not photo-activated was capable of effectively inactivating 50 % of influenza H1N1 virus (ID50) at a concentration of 117 nM. After photo-activation, the ID50 was reduced to <10 nM. The dose of photo-activated TLD-1433 needed to reduce H1N1 infectivity >99 % (ID99) was approximately 170 nM. Similarly, the ID99 of photo-activated TLD-1433 was determined to range from about 20 to 120 nM for other tested enveloped viruses; specifically, a human coronavirus, herpes simplex virus, the poxvirus Vaccinia virus, and Zika virus. TLD-1433 also inactivated two tested non-enveloped viruses; specifically, adenovirus type 5 and mammalian orthoreovirus, but at considerably higher concentrations. Analyses of TLD-1433-treated membranes suggested that lipid peroxidation was a major contributor to enveloped virus inactivation. TLD-1433-mediated virus inactivation was temperature-dependent, with approximately 10-fold more efficient virucidal activity when viruses were treated at 37 °C than when treated at room temperature (∼22 °C). The presence of fetal bovine serum and virus solution turbidity reduced TLD-1433-mediated virucidal efficiency. Immunoblots of TLD-1433-treated human coronavirus indicated the treated spike protein remained particle-associated.

2.
Front Biosci (Landmark Ed) ; 29(5): 195, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38812326

RESUMO

BACKGROUND: To investigate the immune responses and protection ability of ultraviolet light (UV)-inactivated recombinant vesicular stomatitis (rVSV)-based vectors that expressed a fusion protein consisting of four copies of the influenza matrix 2 protein ectodomain (tM2e) and the Dendritic Cell (DC)-targeting domain of the Ebola Glycoprotein (EΔM), (rVSV-EΔM-tM2e). METHOD: In our previous study, we demonstrated the effectiveness of rVSV-EΔM-tM2e to induce robust immune responses against influenza M2e and protect against lethal challenges from H1N1 and H3N2 strains. Here, we used UV to inactivate rVSV-EΔM-tM2e and tested its immunogenicity and protection in BALB/c mice from a mouse-adapted H1N1 influenza challenge. Using Enzyme-Linked Immunosorbent Assay (ELISA) and Antibody-Dependent Cellular Cytotoxicity (ADCC), the influenza anti-M2e immune responses specific to human, avian and swine influenza strains induced were characterized. Likewise, the specificity of the anti-M2e immune responses induced in recognizing M2e antigen on the surface of the cell was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. RESULTS: Like the live attenuated rVSV-EΔM-tM2e, the UV-inactivated rVSV-EΔM-tM2e was highly immunogenic against different influenza M2e from strains of different hosts, including human, swine, and avian, and protected against influenza H1N1 challenge in mice. The FACS analysis demonstrated that the induced immune responses can recognize influenza M2 antigens from human, swine and avian influenza strains. Moreover, the rVSV-EΔM-tM2e also induced ADCC activity against influenza M2e from different host strains. CONCLUSIONS: These findings suggest that UV-inactivated rVSV-EΔM-tM2e could be used as an inactivated vaccine against influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Raios Ultravioleta , Animais , Vacinas contra Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Camundongos , Humanos , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Vesiculovirus/imunologia , Vesiculovirus/genética , Vacinas de Produtos Inativados/imunologia
3.
ACS Infect Dis ; 9(5): 1064-1077, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37053583

RESUMO

Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.


Assuntos
Arenavirus , COVID-19 , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Linhagem Celular , Esfingosina , SARS-CoV-2 , Proteínas Virais de Fusão
4.
Front Immunol ; 14: 1138609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999023

RESUMO

Despite numerous clinically available vaccines and therapeutics, aged patients remain at increased risk for COVID-19 morbidity. Furthermore, various patient populations, including the aged can have suboptimal responses to SARS-CoV-2 vaccine antigens. Here, we characterized vaccine-induced responses to SARS-CoV-2 synthetic DNA vaccine antigens in aged mice. Aged mice exhibited altered cellular responses, including decreased IFNγ secretion and increased TNFα and IL-4 secretion suggestive of TH2-skewed responses. Aged mice exhibited decreased total binding and neutralizing antibodies in their serum but significantly increased TH2-type antigen-specific IgG1 antibody compared to their young counterparts. Strategies to enhance vaccine-induced immune responses are important, especially in aged patient populations. We observed that co-immunization with plasmid-encoded adenosine deaminase (pADA)enhanced immune responses in young animals. Ageing is associated with decreases in ADA function and expression. Here, we report that co-immunization with pADA enhanced IFNγ secretion while decreasing TNFα and IL-4 secretion. pADA expanded the breadth and affinity SARS-CoV-2 spike-specific antibodies while supporting TH1-type humoral responses in aged mice. scRNAseq analysis of aged lymph nodes revealed that pADA co-immunization supported a TH1 gene profile and decreased FoxP3 gene expression. Upon challenge, pADA co-immunization decreased viral loads in aged mice. These data support the use of mice as a model for age-associated decreased vaccine immunogenicity and infection-mediated morbidity and mortality in the context of SARS-CoV-2 vaccines and provide support for the use of adenosine deaminase as a molecular adjuvant in immune-challenged populations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , Fator de Necrose Tumoral alfa , Interleucina-4 , Adenosina Desaminase , Imunização , Anticorpos Antivirais , Modelos Animais de Doenças
5.
J Immunol ; 209(1): 118-127, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750334

RESUMO

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have demonstrated strong immunogenicity and protection against severe disease, concerns about the duration and breadth of these responses remain. In this study, we show that codelivery of plasmid-encoded adenosine deaminase-1 (pADA) with SARS-CoV-2 spike glycoprotein DNA enhances immune memory and durability in vivo. Coimmunized mice displayed increased spike-specific IgG of higher affinity and neutralizing capacity as compared with plasmid-encoded spike-only-immunized animals. Importantly, pADA significantly improved the longevity of these enhanced responses in vivo. This coincided with durable increases in frequencies of plasmablasts, receptor-binding domain-specific memory B cells, and SARS-CoV-2-specific T follicular helper cells. Increased spike-specific T cell polyfunctionality was also observed. Notably, animals coimmunized with pADA had significantly reduced viral loads compared with their nonadjuvanted counterparts in a SARS-CoV-2 infection model. These data suggest that pADA enhances immune memory and durability and supports further translational studies.


Assuntos
COVID-19 , Vacinas Virais , Adenosina Desaminase/genética , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2
6.
Viruses ; 15(1)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36680125

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) that has caused a pandemic with millions of human infections. There continues to be a pressing need to develop potential therapies and vaccines to inhibit SARS-CoV-2 infection to mitigate the ongoing pandemic. Epidemiological data from the current pandemic indicates that there may be sex-dependent differences in disease outcomes. To investigate these differences, we proposed to use common small animal species that are frequently used to model disease with viruses. However, common laboratory strains of mice are not readily infected by SARS-CoV-2 because of differences in the angiotensin-converting enzyme 2 (ACE2), the cellular receptor for the virus. To overcome this limitation, we transduced common laboratory accessible strains of mice of different sexes and age groups with a novel a triple AAV6 mutant, termed AAV6.2FF, encoding either human ACE2 or luciferase via intranasal administration to promote expression in the lung and nasal turbinates. Infection of AAV-hACE2-transduced mice with SARS-CoV-2 resulted in high viral titers in the lungs and nasal turbinates, establishment of an IgM and IgG antibody response, and modulation of lung and nasal turbinate cytokine profiles. There were insignificant differences in infection characteristics between age groups and sex-related differences; however, there were significant strain-related differences between BALB/c vs. C57BL/6 mice. We show that AAV-hACE2-transduced mice are a useful for determining immune responses and for potential evaluation of SARS-CoV-2 vaccines and antiviral therapies, and this study serves as a model for the utility of this approach to rapidly develop small-animal models for emerging viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
7.
Biomedicines ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572372

RESUMO

Adeno-associated virus (AAV) vector mediated expression of therapeutic monoclonal antibodies is an alternative strategy to traditional vaccination to generate immunity in immunosuppressed or immunosenescent individuals. In this study, we vectorized a human monoclonal antibody (31C2) directed against the spike protein of SARS-CoV-2 and determined the safety profile of this AAV vector in mice and sheep as a large animal model. In both studies, plasma biochemical parameters and hematology were comparable to untreated controls. Except for mild myositis at the site of injection, none of the major organs revealed any signs of toxicity. AAV-mediated human IgG expression increased steadily throughout the 28-day study in sheep, resulting in peak concentrations of 21.4-46.7 µg/ mL, demonstrating practical scale up from rodent to large animal models. This alternative approach to immunity is worth further exploration after this demonstration of safety, tolerability, and scalability in a large animal model.

8.
iScience ; 24(7): 102699, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124612

RESUMO

More than 100 million people have been infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Common laboratory mice are not susceptible to wild-type SARS-CoV-2 infection, challenging the development and testing of effective interventions. Here, we describe the development and testing of a mouse model for SARS-CoV-2 infection based on transduction of the respiratory tract of laboratory mice with an adeno-associated virus vector (AAV6) expressing human ACE-2 (AAV6.2FF-hACE2). We validated this model using a previously described synthetic DNA vaccine plasmid, INO-4800 (pS). Intranasal instillation of AAV6.2FF-hACE2 resulted in robust hACE2 expression in the respiratory tract. pS induced robust cellular and humoral responses. Vaccinated animals were challenged with 105 TCID50 SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) and euthanized four days post-challenge to assess viral load. One immunization resulted in 50% protection and two immunizations were completely protective. Overall, the AAV6.2FF-hACE2 mouse transduction model represents an easily accessible, genetically diverse mouse model for wild-type SARS-CoV-2 infection and preclinical evaluation of potential interventions.

9.
PLoS Negl Trop Dis ; 14(4): e0008105, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251473

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus that can cause a hemorrhagic fever in humans, with a case fatality rate of up to 40%. Cases of CCHFV have been reported in Africa, Asia, and southern Europe; and recently, due to the expanding range of its vector, autochthonous cases have been reported in Spain. Although it was discovered over 70 years ago, our understanding of the pathogenesis of this virus remains limited. We used RNA-Seq in two human liver cell lines (HepG2 and Huh7) infected with CCHFV (strain IbAr10200), to examine kinetic changes in host expression and viral replication simultaneously at 1 and 3 days post infection. Through this, numerous host pathways were identified that were modulated by the virus including: antiviral response and endothelial cell leakage. Notably, the genes encoding DDX60, a cytosolic component of the RIG-I signalling pathway and OAS2 were both shown to be dysregulated. Interestingly, PTPRR was induced in Huh7 cells but not HepG2 cells. This has been associated with the TLR9 signalling cascade, and polymorphisms in TLR9 have been associated with poor outcomes in patients. Additionally, we performed whole-genome sequencing on CCHFV to assess viral diversity over time, and its relationship to the host response. As a result, we have demonstrated that through next-generation mRNA deep-sequencing it is possible to not only examine mRNA gene expression, but also to examine viral quasispecies and typing of the infecting strain. This demonstrates a proof-of-principle that CCHFV specimens can be analyzed to identify both the virus and host biomarkers that may have implications for prognosis.


Assuntos
Expressão Gênica , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/genética , Interações Hospedeiro-Patógeno/genética , Fígado/metabolismo , RNA-Seq/métodos , 2',5'-Oligoadenilato Sintetase/genética , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Redes Reguladoras de Genes , Febre Hemorrágica da Crimeia/metabolismo , Febre Hemorrágica da Crimeia/virologia , Células Hep G2 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , RNA Mensageiro , Receptores Imunológicos , Transdução de Sinais , Receptor Toll-Like 9 , Replicação Viral , Sequenciamento do Exoma
10.
Viruses ; 11(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832223

RESUMO

Filoviruses, such as Ebola virus (EBOV) and Marburg virus, are causative agents of unpredictable outbreaks of severe hemorrhagic fevers in humans and non-human primates. For infection, filoviral particles need to be internalized and delivered to intracellular vesicles containing cathepsin proteases and the viral receptor Niemann-Pick C1. Previous studies have shown that EBOV triggers macropinocytosis of the viral particles in a glycoprotein (GP)-dependent manner, but the molecular events required for filovirus internalization remain mostly unknown. Here we report that the diacylglycerol kinase inhibitor, R-59-022, blocks EBOV GP-mediated entry into Vero cells and bone marrow-derived macrophages. Investigation of the mode of action of the inhibitor revealed that it blocked an early step in entry, more specifically, the internalization of the viral particles via macropinocytosis. Finally, R-59-022 blocked viral entry mediated by a panel of pathogenic filovirus GPs and inhibited growth of replicative Ebola virus. Taken together, our studies suggest that R-59-022 could be used as a tool to investigate macropinocytic uptake of filoviruses and could be a starting point for the development of pan-filoviral therapeutics.


Assuntos
Diacilglicerol Quinase/antagonistas & inibidores , Filoviridae/efeitos dos fármacos , Filoviridae/fisiologia , Pirimidinonas/farmacologia , Tiazóis/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Ebolavirus/fisiologia , Células HEK293 , Humanos , Macrófagos/virologia , Marburgvirus/fisiologia , Pinocitose/efeitos dos fármacos , Receptores Virais , Células Vero , Replicação Viral/efeitos dos fármacos
11.
Viruses ; 11(3)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875741

RESUMO

Filoviruses cause lethal hemorrhagic fever in humans. The filovirus nucleoprotein (NP) is expressed in high abundance in infected cells and is essential for virus replication. To generate anti-filovirus monoclonal antibodies (mAbs) against the NP, mice were immunized with peptides known as B-cell epitopes corresponding to different filovirus NPs, and hybridomas were screened using FLAG-tagged filovirus NP constructs. Numerous mAbs were identified, isotyped, and characterized. The anti-NP mAbs demonstrated different ranges of binding affinities to various filovirus NPs. Most of the clones specifically detected both recombinant and wild-type NPs from different filoviruses, including Ebola (EBOV), Sudan (SUDV), Bundibugyo (BDBV), Marburg (MARV), Tai Forest (TAFV), and Reston (RESTV) viruses in western blot analysis. The mAbs were also able to detect native NPs within the cytoplasm of infected cells by immunofluorescence confocal microscopy. Thus, this panel of mAbs represents an important set of tools that may be potentially useful for diagnosing filovirus infection, characterizing virus replication, and detecting NP⁻host protein interactions.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Filoviridae/imunologia , Nucleoproteínas/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Sítios de Ligação de Anticorpos , Ebolavirus/imunologia , Epitopos de Linfócito B/imunologia , Feminino , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/virologia , Imunização , Isotipos de Imunoglobulinas , Marburgvirus/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/imunologia
12.
EBioMedicine ; 32: 142-163, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29866590

RESUMO

Previous transcriptomic analyses suggested that the 1918 influenza A virus (IAV1918), one of the most devastating pandemic viruses of the 20th century, induces a dysfunctional cytokine storm and affects other innate immune response patterns. Because all viruses are obligate parasites that require host cells for replication, we globally assessed how IAV1918 induces host protein dysregulation. We performed quantitative mass spectrometry of IAV1918-infected cells to measure host protein dysregulation. Selected proteins were validated by immunoblotting and phosphorylation levels of members of the PI3K/AKT/mTOR pathway were assessed. Compared to mock-infected controls, >170 proteins in the IAV1918-infected cells were dysregulated. Proteins mapped to amino sugar metabolism, purine metabolism, steroid biosynthesis, transmembrane receptors, phosphatases and transcription regulation. Immunoblotting demonstrated that IAV1918 induced a slight up-regulation of the lamin B receptor whereas all other tested virus strains induced a significant down-regulation. IAV1918 also strongly induced Rab5b expression whereas all other tested viruses induced minor up-regulation or down-regulation. IAV1918 showed early reduced phosphorylation of PI3K/AKT/mTOR pathway members and was especially sensitive to rapamycin. These results suggest the 1918 strain requires mTORC1 activity in early replication events, and may explain the unique pathogenicity of this virus.


Assuntos
Vírus da Influenza A/genética , Influenza Humana/genética , Proteína Oncogênica v-akt/genética , Serina-Treonina Quinases TOR/genética , Regulação da Expressão Gênica/genética , Humanos , Imunidade Inata/genética , Vírus da Influenza A/patogenicidade , Influenza Humana/patologia , Influenza Humana/virologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Sirolimo/metabolismo , Replicação Viral/genética , Proteínas rab5 de Ligação ao GTP/genética
13.
Virology ; 513: 17-28, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031163

RESUMO

For entry, Ebola virus (EBOV) requires the interaction of its viral glycoprotein with the cellular protein Niemann-Pick C1 (NPC1) which resides in late endosomes and lysosomes. How EBOV is trafficked and delivered to NPC1 and whether this is positively regulated during entry remain unclear. Here, we show that the PIKfyve-ArPIKfyve-Sac3 cellular complex, which is involved in the metabolism of phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P2), is critical for EBOV infection. Although the expression of all subunits of the complex was required for efficient entry, PIKfyve kinase activity was specifically critical for entry by all pathogenic filoviruses. Inhibition of PIKfyve prevented colocalization of EBOV with NPC1 and led to virus accumulation in intracellular vesicles with characteristics of early endosomes. Importantly, genetically-encoded phosphoinositide probes revealed an increase in PtdIns(3,5)P2-positive vesicles in cells during EBOV entry. Taken together, our studies suggest that EBOV requires PtdIns(3,5)P2 production in cells to promote efficient delivery to NPC1.


Assuntos
Proteínas de Transporte/metabolismo , Ebolavirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Flavoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
14.
Nat Commun ; 8: 15743, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589934

RESUMO

Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract.


Assuntos
Testículo/virologia , Vacinas de DNA/farmacologia , Vacinas Virais/farmacologia , Infecção por Zika virus/fisiopatologia , Animais , Masculino , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Espermatozoides/patologia , Espermatozoides/virologia , Testículo/patologia , Proteínas do Envelope Viral/genética , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/prevenção & controle
15.
J Proteome Res ; 14(11): 4511-23, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26381135

RESUMO

Influenza A viruses (IAV) are important human and animal pathogens with potential for causing pandemics. IAVs exhibit a wide spectrum of clinical illness in humans, from relatively mild infections by seasonal strains to acute respiratory distress syndrome during infections with some highly pathogenic avian influenza (HPAI) viruses. In the present study, we infected A549 human cells with seasonal H1N1 (sH1N1), 2009 pandemic H1N1 (pdmH1N1), or novel H7N9 and HPAI H5N1 strains. We used multiplexed isobaric tags for relative and absolute quantification to measure proteomic host responses to these different strains at 1, 3, and 6 h post-infection. Our analyses revealed that both H7N9 and H5N1 strains induced more profound changes to the A549 global proteome compared to those with low-pathogenicity H1N1 virus infection, which correlates with the higher pathogenicity these strains exhibit at the organismal level. Bioinformatics analysis revealed important modulation of the nuclear factor erythroid 2-related factor 2 (NRF2) oxidative stress response in infection. Cellular fractionation and Western blotting suggested that the phosphorylated form of NRF2 is not imported to the nucleus in H5N1 and H7N9 virus infections. Fibronectin was also strongly inhibited in infection with H5N1 and H7N9 strains. This is the first known comparative proteomic study of the host response to H7N9, H5N1, and H1N1 viruses and the first time NRF2 is shown to be implicated in infection with highly pathogenic strains of influenza.


Assuntos
Células Epiteliais/metabolismo , Fibronectinas/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Fator 2 Relacionado a NF-E2/genética , Proteoma/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Biologia Computacional/métodos , Citosol/metabolismo , Citosol/virologia , Células Epiteliais/virologia , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Virus da Influenza A Subtipo H5N1/fisiologia , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosforilação , Transporte Proteico , Proteoma/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Transdução de Sinais , Virulência
17.
Sci Transl Med ; 5(187): 187ra72, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23720583

RESUMO

The emergence of a new influenza pandemic remains a threat that could result in a substantial loss of life and economic disruption worldwide. Advances in human antibody isolation have led to the discovery of monoclonal antibodies (mAbs) that have broad neutralizing activity against various influenza strains, although their direct use for prophylaxis is impractical. To overcome this limitation, our approach is to deliver antibody via adeno-associated virus (AAV) vectors to the site of initial infection, which, for respiratory viruses such as influenza, is the nasopharyngeal mucosa. AAV vectors based on serotype 9 were engineered to express a modified version of the previously isolated broadly neutralizing mAb to influenza A, FI6. We demonstrate that intranasal delivery of AAV9.FI6 into mice afforded complete protection and log reductions in viral load to 100 LD50 (median lethal dose) of three clinical isolates of H5N1 and two clinical isolates of H1N1, all of which have been associated with historic human pandemics (including H1N1 1918). Similarly, complete protection was achieved in ferrets challenged with lethal doses of H5N1 and H1N1. This approach serves as a platform for the prevention of natural or deliberate respiratory diseases for which a protective antibody is available.


Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Técnicas de Transferência de Genes , Infecções por Orthomyxoviridae/prevenção & controle , Administração Intranasal , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Dependovirus/genética , Relação Dose-Resposta Imunológica , Feminino , Furões , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C
18.
PLoS One ; 7(7): e39990, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808082

RESUMO

The triple reassortant H2N3 virus isolated from diseased pigs in the United States in 2006 is pathogenic for certain mammals without prior adaptation and transmits among swine and ferrets. Adaptation, in the H2 hemagglutinin derived from an avian virus, includes the ability to bind to the mammalian receptor, a significant prerequisite for infection of mammals, in particular humans, which poses a big concern for public health. Here we investigated the pathogenic potential of swine H2N3 in Cynomolgus macaques, a surrogate model for human influenza infection. In contrast to human H2N2 virus, which served as a control and largely caused mild pneumonia similar to seasonal influenza A viruses, the swine H2N3 virus was more pathogenic causing severe pneumonia in nonhuman primates. Both viruses replicated in the entire respiratory tract, but only swine H2N3 could be isolated from lung tissue on day 6 post infection. All animals cleared the infection whereas swine H2N3 infected macaques still presented with pathologic changes indicative of chronic pneumonia at day 14 post infection. Swine H2N3 virus was also detected to significantly higher titers in nasal and oral swabs indicating the potential for animal-to-animal transmission. Plasma levels of IL-6, IL-8, MCP-1 and IFNγ were significantly increased in swine H2N3 compared to human H2N2 infected animals supporting the previously published notion of increased IL-6 levels being a potential marker for severe influenza infections. In conclusion, the swine H2N3 virus represents a threat to humans with the potential for causing a larger outbreak in a non-immune or partially immune population. Furthermore, surveillance efforts in farmed pig populations need to become an integral part of any epidemic and pandemic influenza preparedness.


Assuntos
Vírus da Influenza A/patogenicidade , Macaca fascicularis/virologia , Infecções por Orthomyxoviridae/veterinária , Pneumonia Viral/veterinária , Vírus Reordenados/patogenicidade , Doenças dos Suínos/transmissão , Suínos/virologia , Animais , Quimiocina CCL2/biossíntese , Quimiocina CCL2/imunologia , Feminino , Humanos , Vírus da Influenza A Subtipo H2N2/imunologia , Vírus da Influenza A Subtipo H2N2/patogenicidade , Vírus da Influenza A/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Interleucina-8/biossíntese , Interleucina-8/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca fascicularis/imunologia , Masculino , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Pneumonia Viral/etiologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Vírus Reordenados/imunologia , Índice de Gravidade de Doença , Suínos/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
19.
Vaccine ; 30(3): 626-36, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22119588

RESUMO

Achieving broad-spectrum immunity against emerging zoonotic viruses such as avian influenza H5N1 and other possible pandemic viruses will require generation of cross-protective immune responses. Strong antibody responses generated against the H5HA protein are protective, however, antigenic variation between diverging isolates can interfere with virus neutralization. The current study investigates co-administration of an H5 HA DNA vaccine with other variable and conserved influenza antigens (NA, NP, and M2). All antigens were derived from the A/Hanoi/30408/2005 (H5N1) virus and the contribution towards overall protection and immune activation was assessed against lethal homologous and heterologous challenges. An (HA+NA) combination afforded the best protection against homologous challenge and (HA+NP) was comparable to HA alone against heterologous A/Hong Kong/483/1997 challenge. Interestingly, combining all four H5 antigens at a single site did not improve protection against matched challenge and unexpectedly reduced survival by 30% against a heterologous challenge. Survival was also significantly decreased against heterologous challenge following combination of (HA+NP) with an unrelated antigen. Although there were no significant changes in antibody titres, significantly lower T-cell responses were detected against all antigens except HA in each combination. Co-administration of the vaccines at different injection sites restored T-cell responses but did not improve overall protection. Similar observations were also recorded following combination of HA and NP antigens using two different adenovirus-based backbones. Overall, the data suggest that co-administering certain H5N1 antigens offer better or comparable protection to HA alone, however, combining extra antigens may be unnecessary and lead to unfavourable immune responses.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Animais , Antígenos Virais/genética , Modelos Animais de Doenças , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/genética , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Neuraminidase/imunologia , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Análise de Sobrevida , Linfócitos T/imunologia , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
20.
Vaccine ; 29(39): 6793-801, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21211587

RESUMO

The identification of immune correlates of protection against highly pathogenic human-adapted influenza is instrumental in the development of the next generation of vaccines. Towards this, ferrets received either one dose of a conventionally produced vaccine, two inoculations of a hemagglutinin (HA)-expressing DNA vaccine, or a prime-boost regimen of the DNA vaccine followed by injection of a HA-expressing adenoviral vector. In addition to the antibody response, ferret-specific interferon-gamma (IFN-γ) ELISpot and flow cytometry assays were developed to follow the cellular immune response. Animals that received the conventional vaccine mounted a humoral response, while the DNA vaccinated groups also developed IFN-γ producing T cells. Upon challenge with the matched highly pathogenic A/South Carolina/1/18 H1N1 influenza A virus, the conventionally vaccinated group developed moderate to severe signs of disease, whereas the DNA vaccinated animals experienced mild disease. In the presence of an antibody response within the protective range, the extent of the T cell response correlated more accurately with reduced morbidity in vaccinated ferrets.


Assuntos
Furões/imunologia , Imunidade Celular , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacinas de DNA/imunologia , Animais , Formação de Anticorpos , Cães , Eletroporação , ELISPOT/métodos , Furões/virologia , Citometria de Fluxo/métodos , Genes Virais , Células HEK293 , Anticorpos Anti-HIV/análise , Anticorpos Anti-HIV/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vacinas contra Influenza/administração & dosagem , Interferon gama/imunologia , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/virologia , Vacinas de DNA/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA