Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 12(2): 213, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637688

RESUMO

Axonal damage is an early step in traumatic and neurodegenerative disorders of the central nervous system (CNS). Damaged axons are not able to regenerate sufficiently in the adult mammalian CNS, leading to permanent neurological deficits. Recently, we showed that inhibition of the autophagic protein ULK1 promotes neuroprotection in different models of neurodegeneration. Moreover, we demonstrated previously that axonal protection improves regeneration of lesioned axons. However, whether axonal protection mediated by ULK1 inhibition could also improve axonal regeneration is unknown. Here, we used an adeno-associated viral (AAV) vector to express a dominant-negative form of ULK1 (AAV.ULK1.DN) and investigated its effects on axonal regeneration in the CNS. We show that AAV.ULK1.DN fosters axonal regeneration and enhances neurite outgrowth in vitro. In addition, AAV.ULK1.DN increases neuronal survival and enhances axonal regeneration after optic nerve lesion, and promotes long-term axonal protection after spinal cord injury (SCI) in vivo. Interestingly, AAV.ULK1.DN also increases serotonergic and dopaminergic axon sprouting after SCI. Mechanistically, AAV.ULK1.DN leads to increased ERK1 activation and reduced expression of RhoA and ROCK2. Our findings outline ULK1 as a key regulator of axonal degeneration and regeneration, and define ULK1 as a promising target to promote neuroprotection and regeneration in the CNS.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Axônios/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Regeneração Nervosa , Traumatismos do Nervo Óptico/terapia , Nervo Óptico/metabolismo , Traumatismos da Medula Espinal/terapia , Medula Espinal/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Axônios/patologia , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação para Baixo , Feminino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Crescimento Neuronal , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Ratos Wistar , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Fatores de Tempo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
2.
Biomedicines ; 8(8)2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748808

RESUMO

The rapid development of parasite drug resistance as well as the lack of medications targeting both the asexual and the sexual blood stages of the malaria parasite necessitate the search for novel antimalarial compounds. Eleven organoarsenic compounds were synthesized and tested for their effect on the asexual blood stages and sexual transmission stages of the malaria parasite Plasmodium falciparum using in vitro assays. The inhibitory potential of the compounds on blood stage viability was tested on the chloroquine (CQ)-sensitive 3D7 and the CQ-resistant Dd2 strain using the Malstat assay. The most effective compounds were subsequently investigated for their effect on impairing gametocyte development and gametogenesis, using the gametocyte-producing NF54 strain in respective cell-based assays. Their potential toxicity was investigated on leukemia cell line Nalm-6 and non-infected erythrocytes. Five out of the 11 compounds showed antiplasmodial activities against 3D7, with half-maximal inhibitory concentration (IC50) values ranging between 1.52 and 8.64 µM. Three of the compounds also acted against Dd2, with the most active compound As-8 exhibiting an IC50 of 0.35 µM. The five compounds also showed significant inhibitory effects on the parasite sexual stages at both IC50 and IC90 concentrations with As-8 displaying the best gametocytocidal activity. No hemolytic and cytotoxic effect was observed for any of the compounds. The organoarsenic compound As-8 may represent a good lead for the design of novel organoarsenic drugs with combined antimalarial and transmission blocking activities.

3.
J Neural Transm (Vienna) ; 124(8): 973-981, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28168622

RESUMO

Current therapies for Parkinson's disease (PD) confer symptomatic relief and are particularly efficient in the treatment of motor symptoms in earlier disease stages. However, we are still unable to treat the causes of neurodegeneration by modification of the underlying mechanisms, which is partially due to their insufficient understanding. In this short review, we focus on two pivotal disease mechanisms: alpha-synuclein pathology and dysfunction of iron homeostasis as well as their intricate interaction. Both pathomechanisms have been extensively studied in the past and represent valid targets for disease-modifying pharmacological treatment approaches for PD. We summarize the current attempts to exploit iron chelation and modification of alpha-synuclein pathology as translational therapies in PD and discuss the chances and challenges of prospective disease-modifying approaches.


Assuntos
Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Ferro/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Humanos
4.
J Neurochem ; 134(2): 261-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25807858

RESUMO

A lesion to the rat rubrospinal tract is a model for traumatic spinal cord lesions and results in atrophy of the red nucleus neurons, axonal dieback, and locomotor deficits. In this study, we used adeno-associated virus (AAV)-mediated over-expression of BAG1 and ROCK2-shRNA in the red nucleus to trace [by co-expression of enhanced green fluorescent protein (EGFP)] and treat the rubrospinal tract after unilateral dorsal hemisection. We investigated the effects of targeted gene therapy on neuronal survival, axonal sprouting of the rubrospinal tract, and motor recovery 12 weeks after unilateral dorsal hemisection at Th8 in rats. In addition to the evaluation of BAG1 and ROCK2 as therapeutic targets in spinal cord injury, we aimed to demonstrate the feasibility and the limits of an AAV-mediated protein over-expression versus AAV.shRNA-mediated down-regulation in this traumatic CNS lesion model. Our results demonstrate that BAG1 and ROCK2-shRNA both promote neuronal survival of red nucleus neurons and enhance axonal sprouting proximal to the lesion.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Regeneração Nervosa/fisiologia , Neurônios/patologia , Traumatismos da Medula Espinal/patologia , Fatores de Transcrição/biossíntese , Quinases Associadas a rho/biossíntese , Animais , Axônios , Sequência de Bases , Western Blotting , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Vetores Genéticos , Imuno-Histoquímica , Dados de Sequência Molecular , RNA Interferente Pequeno , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Núcleo Rubro/patologia , Fatores de Transcrição/genética , Quinases Associadas a rho/genética
5.
Front Aging Neurosci ; 6: 239, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309425

RESUMO

The dopaminergic (DAergic) nigrostriatal tract has an intrinsic regenerative capacity which can be impaired in Parkinson's disease (PD). Alpha-synuclein (aSyn) is a major pathogenic component in PD but its impact on DAergic axonal regeneration is largely unknown. In this study, we expressed pathogenic variants of human aSyn by means of recombinant adeno-associated viral vectors in experimental paradigms of DAergic regeneration. In a scratch lesion model in vitro, both aSyn(A30P) and aSyn(A53T) significantly reduced DAergic neurite regeneration and induced loss of TH-immunopositive cells while aSyn(WT) showed only minor cellular neurotoxic effects. The striatal density of TH-immunopositive axons in the striatal 6-OHDA lesion mouse model was attenuated only by aSyn(A30P). However, striatal expression levels of the regeneration marker GAP-43 in TH-immunopositive fibers were reduced by both aSyn(A30P) and aSyn(A53T), but not by aSyn(WT), which was associated with an activation of the ROCK signaling pathway. Nigral DAergic cell loss was only mildly enhanced by additional overexpression of aSyn variants. Our findings indicate that mutations of aSyn have a strong impact on the regenerative capacity of DAergic neurons, which may contribute to their pathogenic effects.

6.
Front Cell Neurosci ; 8: 273, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25249936

RESUMO

The Rho/ROCK pathway is a promising therapeutic target in neurodegenerative and neurotraumatic diseases. Pharmacological inhibition of various pathway members has been shown to promote neuronal regeneration and survival. However, because pharmacological inhibitors are inherently limited in their specificity, shRNA-mediated approaches can add more information on the function of each single kinase involved. Thus, we generated adeno-associated viral vectors (AAV) to specifically downregulate Ras homologous member A (RhoA) via shRNA. We found that specific knockdown of RhoA promoted neurite outgrowth of retinal ganglion cells (RGC) grown on the inhibitory substrate chondroitin sulfate proteoglycan (CSPG) as well as neurite regeneration of primary midbrain neurons (PMN) after scratch lesion. In the rat optic nerve crush (ONC) model in vivo, downregulation of RhoA significantly enhanced axonal regeneration compared to control. Moreover, survival of RGC transduced with AAV expressing RhoA-shRNA was substantially increased at 2 weeks after optic nerve axotomy. Compared to previous data using pharmacological inhibitors to target RhoA, its upstream regulator Nogo or its main downstream target ROCK, the specific effects of RhoA downregulation shown here were most pronounced in regard to promoting RGC survival but neurite outgrowth and axonal regeneration were also increased significantly. Taken together, we show here that specific knockdown of RhoA substantially increases neuronal survival after optic nerve axotomy and modestly increases neurite outgrowth in vitro and axonal regeneration after optic nerve crush.

7.
J Neurochem ; 117(5): 892-903, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21443522

RESUMO

Hepatocyte growth factor (HGF) is known to promote the survival and foster neuritic outgrowth of different subpopulations of CNS neurons during development. Together with its corresponding receptor c-mesenchymal-epithelial transition factor (Met), it is expressed in the developing and the adult murine, rat and human CNS. We have studied the role of HGF in paradigms of retinal ganglion cell (RGC) regeneration and cell death in vitro and in vivo. After application of recombinant HGF in vitro, survival of serum-deprived RGC-5 cells and of growth factor-deprived primary RGC was significantly increased. This was shown to be correlated to the phosphorylation of c-Met and subsequent activation of serine/threonine protein kinase Akt and MAPK downstream signalling pathways involved in neuronal survival. Furthermore, neurite outgrowth of primary RGC was stimulated by HGF. In vivo, c-Met expression in RGC was up-regulated after optic nerve axotomy lesion. Here, treatment with HGF significantly improved survival of axotomized RGC and enhanced axonal regeneration after optic nerve crush. Our data demonstrates that exogenously applied HGF has a neuroprotective and regeneration-promoting function for lesioned CNS neurons. We provide strong evidence that HGF may represent a trophic factor for adult CNS neurons, which may play a role as therapeutic target in the treatment of neurotraumatic and neurodegenerative CNS disorders.


Assuntos
Axônios/efeitos dos fármacos , Fator de Crescimento de Hepatócito/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Axotomia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Hibridização In Situ , Camundongos , Compressão Nervosa , Nervo Óptico/citologia , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/patologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Ratos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA