Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559608

RESUMO

The role of apomeiosis, parthenogenesis, and pseudogamy in the asexual reproduction of some plant groups has not been fully elucidated in relation to species diversification. Quantitative analyses of seed origin may help in gaining better understanding of intercytotypic interactions. Asexual reproduction associated with polyploidy and frequent hybridization plays a crucial role in the evolutionary history of the genus Crataegus in North America. In Europe, the genus represents a taxonomically complex and very difficult species group not often studied using a modern biosystematic approach. We investigated the reproduction pathways in mixed-cytotype populations of selected taxa of Crataegus in eastern Slovakia, Central Europe. The investigated accessions were characterized by seed production data and the ploidy level of mature plants as well as the embryo and endosperm tissues of their seeds determined via flow cytometry. Diploid and polyploid hawthorns reproduce successfully; they also produce high numbers of seeds. An exception is represented by an almost sterile triploid. Diploids reproduce sexually. Polyploids shift to asexual reproduction, but pseudogamy seems to be essential for regular seed development. In rare cases, fertilization of unreduced gametes occurs, which offers opportunity for the establishment of new polyploid cytotypes between diploid sexuals and polyploid asexuals. Opposite to sexual diploids, triploids are obligate, and tetraploids almost obligate apomicts. Apomixis is considered to help stabilize individual weakly differentiated polyploid microspecies. Pseudogamy is a common feature and usually leads to unbalanced maternal to paternal contribution in the endosperm of triploid accessions. Parental contribution to endosperm gene dosage is somehow relaxed in triploids. Our Crataegus plant system resembles reproduction in the diploids and polyploids of North American hawthorns. Our data provide support for the hypothesis that polyploidization, shifts in reproduction modes, and hybridization shape the genus diversity also in Central Europe.

2.
Bot Stud ; 57(1): 34, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28597444

RESUMO

BACKGROUND: Endoreduplication appears in numerous plant species and plays a vital role during ontogeny. The presence of polyploid cells in an otherwise diploid organism is tied specifically to the taxonomy, ecology and physiology of the studied specimen. Little is known about the changes in endopolyploidy levels of floral organs during their development. In order to uncover the workings of endoreduplication in polysomatic species, our study examines flowers of T. pratense in three ontogenetic stages by means of flow cytometry. RESULTS: Cultivar 'Manuela' is characterized by the presence of 2C-8C and 'Dajana' 2C-16C nuclei. In general, the frequencies of nuclei only slightly changed during development. Endopolyploidy levels represented by endoreduplication index (EI) in the 'Manuela' sepals and stamens showed statistical differences between young and old stages, other organs of both cultivars between stages are not statistically different. Significant differences between 'Manuela' and 'Dajana' cultivars were found only in sepals of I. stage, and in petals and carpels of III. stage. Cultivars showed a similar pattern of endopolyploidy. However, a considerable decrease in EI 'Manuela' petals and carpels at III. stage was detected as opposed to 'Dajana'. Overall, a higher endoreduplication index is distinctive for organs of the 'Dajana' cultivar. CONCLUSIONS: In this study we prove the permanent presence of endopolyploid cells in the floral organs of T. pratense throughout their development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA