Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37055370

RESUMO

AIMS: Streptococcus mutans is highly sensitive to inhibitors of proton-pumping F-type ATPase (F-ATPase) under acidic conditions. Herein, we investigated the role of S. mutans F-ATPase in acid tolerance using a bacterium expressing the F-ATPase ß subunit at lower levels than the wild-type strain. METHODS AND RESULTS: We generated a mutant S. mutans expressing the catalytic ß subunit of F-ATPase at lower levels than the wild-type bacterium. The mutant cells exhibited a significantly slower growth rate at pH 5.30, whereas the rate was essentially the same as that of wild-type cells at pH 7.40. In addition, the colony-forming ability of the mutant was decreased at pH <4.30 but not at pH 7.40. Thus, the growth rate and survival of S. mutans expressing low levels of the ß subunit were reduced under acidic conditions. CONCLUSIONS: Together with our previous observations, this study indicates that F-ATPase is involved in the acid tolerance mechanism of S. mutans by secreting protons from the cytoplasm.


Assuntos
Adenosina Trifosfatases , Bombas de Próton , Adenosina Trifosfatases/genética , Bombas de Próton/genética , Prótons , Streptococcus mutans , Concentração de Íons de Hidrogênio
2.
Microbiol Immunol ; 64(11): 719-729, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918493

RESUMO

Abiotrophia defectiva is a species of nutritionally variant streptococci that is found in human saliva and dental plaques and that has been associated with infective endocarditis. In our previous study, it was found that A. defectiva could bind specifically to saliva-coated hydroxyapatite beads (SHA). This study identified a cell surface component of A. defectiva that promotes adherence to SHA beads. The binding of A. defectiva to SHA was reduced in the presence of antibodies against human proline-rich protein (PRP); these results suggested that PRP may be a critical component mediating interactions between A. defectiva and the salivary pellicle. Two-dimensional gel electrophoresis of whole A. defectiva cells followed by Far-Western blotting was conducted by probing with synthetic peptides analogous to the binding region of PRP known as PRP-C. The results indicate that an A. defectiva protein of 37 kDa interacts with PRP-C. The results of amino-terminal sequencing of the adhesive A. defectiva protein revealed significant similarity to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Recombinant GAPDH bound to immobilized PRP-C in a dose-dependent manner and binding of A. defectiva to SHA or to PRP was reduced in the presence of anti-GAPDH antiserum. Western blotting or electron immunomicroscopic observations with anti-GAPDH antiserum revealed that this protein was expressed in both cytosolic and cell wall fractions. These results suggest that A. defectiva could specifically bind to PRP via interactions with cell surface GAPDH; the findings suggest a mechanism underlying A. defectiva-mediated adherence to saliva-coated tooth surfaces.


Assuntos
Abiotrophia/metabolismo , Aderência Bacteriana , Durapatita/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Saliva/microbiologia , Proteínas Salivares Ricas em Prolina/metabolismo , Abiotrophia/genética , Sequência de Aminoácidos , Escherichia coli/genética , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Peptídeos , Prolina , Streptococcus/metabolismo
3.
FEMS Microbiol Lett ; 367(18)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32926111

RESUMO

Streptococcus anginosus is frequently detected in patients with infective endocarditis, abscesses or oral cancer. Although S. anginosus is considered the causative pathogen of these diseases, the pathogenic mechanisms of the bacterium have remained unclear. Previously, we suggested that an extracellular antigen from S. anginosus (SAA) serves as a pathogenic factor by inducing nitric oxide production in murine macrophages. In the present study, we identified SAA using LC-MS/MS and assessed the biological activities of His-tagged recombinant SAA in murine macrophages. SAA was identified as a tyrosine tRNA synthetase (SaTyrRS) that was isolated from the extracellular fraction of S. anginosus but not from other oral streptococci. In addition, inducible nitric oxide synthase and TNF-α mRNA expression was induced in recombinant SaTyrRS-stimulated murine macrophages. However, their mRNA expression was not induced in macrophages stimulated with truncated or heat-inactivated recombinant SaTyrRS, and the activation motif was identified as Arg264-Thr270. Consequently, these results indicated that SaTyrRS could be a novel and specific immunomodulatory protein in S. anginosus.


Assuntos
Antígenos de Bactérias/imunologia , Streptococcus anginosus/patogenicidade , Tirosina-tRNA Ligase/imunologia , Fatores de Virulência/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Linhagem Celular , Espaço Extracelular/metabolismo , Humanos , Inflamação , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus anginosus/enzimologia , Streptococcus anginosus/isolamento & purificação , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Microbiol Immunol ; 62(10): 624-634, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30192020

RESUMO

Streptococcus anginosus appears to be able to adhere to cultured epithelial cells or fibronectin and this may be associated with bacterial pathogenicity. In the present study, the molecular characteristics and virulence of the fibronectin-binding protein (FBP), Fbp62, of S. anginosus were investigated in animal models to determine the role of the molecule in bacterial infection. fbp62 encodes a 549 amino acid residue with an apparent molecular mass of 62.8 kDa that lacks a membrane anchor motif and a leader peptide, suggesting that fbp62 codes for an atypical FBP. It has been observed that the S. anginosus Fbp62 is very similar to the FbpA of Streptococcus gordonii, PavA of Streptococcus pneumoniae, SmFnB of Streptococcus mutans and Fbp54 of Streptococcus pyogenes. Recombinant Fbp62 prepared from pGEX-4T-2 was found to bind to fibronectin in a dose-dependent manner and competitively inhibit the binding of S. anginosus to fibronectin. Furthermore, anti-Fbp62 antiserum abrogated the binding of S. anginosus to fibronectin. Adhesion of the isogenic mutant, Δfbp62, constructed from S. anginosus NCTC 10713 (wild-type, WT) by homologous recombination to HEp-2 cells and DOK cells was significantly weaker than that of S. anginosus WT. In addition, Δfbp62's lethality and ability to form abscesses were weaker in a mouse model of infection than in the WT strain. Taken together, these results suggest that Fbp62 is an important pathogenic factor of S. anginosus.


Assuntos
Adesinas Bacterianas/imunologia , Streptococcus anginosus/imunologia , Streptococcus anginosus/metabolismo , Streptococcus anginosus/patogenicidade , Fatores de Virulência/imunologia , Adesinas Bacterianas/genética , Animais , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais , Fibronectinas/metabolismo , Genes Bacterianos , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Streptococcus anginosus/genética , Streptococcus gordonii/metabolismo , Streptococcus mutans/metabolismo , Streptococcus pneumoniae/imunologia , Streptococcus pyogenes/metabolismo , Virulência
5.
J Gen Appl Microbiol ; 64(4): 174-179, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-29669961

RESUMO

Although Streptococcus anginosus constitutes a proportion of the normal flora of the gastrointestinal and genital tracts, and the oral cavity, it has been reported that S. anginosus infection could be closely associated with abscesses at various body sites, infective endocarditis, and upper gastrointestinal cancers. The colonization in an acidic environment due to the aciduricity of S. anginosus could be the etiology of the systemic infection of the bacteria. To elucidate the aciduricity and acid tolerance mechanisms of the microbe, we examined the viability and growth of S. anginosus under acidic conditions. The viabilities of S. anginosus NCTC 10713 and Streptococcus mutans ATCC 25175 at pH 4.0 showed as being markedly higher than those of Streptococcus sanguinis ATCC 10556, Streptococcus gordonii ATCC 10558, and Streptococcus mitis ATCC 49456; however, the viability was partially inhibited by dicyclohexylcarbodiimide, an H+-ATPase inhibitor, suggesting that H+-ATPase could play a role in the viability of S. anginosus under acidic conditions. In addition, S. anginosus NCTC 10713 could grow at pH 5.0 and showed a marked arginine deiminase (ADI) activity, unlike its ΔarcA mutant, deficient in the gene encoding ADI, and other streptococcal species, which indicated that ADI could also be associated with aciduricity. These results suggest that S. anginosus has significant aciduric properties, which can be attributed to these enzyme activities.


Assuntos
Ácidos/metabolismo , Hidrolases/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Streptococcus anginosus/efeitos dos fármacos , Streptococcus anginosus/fisiologia , Ácidos/farmacologia , Arginina/metabolismo , Meios de Cultura , Dicicloexilcarbodi-Imida/farmacologia , Deleção de Genes , Concentração de Íons de Hidrogênio , Hidrolases/genética , Viabilidade Microbiana/efeitos dos fármacos , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/genética , Streptococcus anginosus/enzimologia , Streptococcus anginosus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA