Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Structure ; 30(5): 733-742.e7, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290795

RESUMO

Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of "life on the edge of solubility." Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular "spindle and thread" mechanism unblocks protein translation in vitro.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Ligação Proteica , Domínios Proteicos , Proteína Supressora de Tumor p53/metabolismo
2.
Nat Commun ; 8(1): 2081, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234026

RESUMO

Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer's disease the amyloid-ß peptide (Aß) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces Aß fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible non-fibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of Aß, while dimers strongly suppress Aß fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Catarata/patologia , Ataxia Cerebelar/patologia , Angiopatia Amiloide Cerebral Familiar/patologia , Surdez/patologia , Demência/patologia , Glicoproteínas de Membrana/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Amiloide/metabolismo , Neuropatias Amiloides Familiares , Dicroísmo Circular , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestrutura , Microscopia Eletrônica de Transmissão , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Ligação Proteica , Domínios Proteicos/fisiologia , Dobramento de Proteína , Multimerização Proteica/fisiologia , Proteínas Recombinantes
3.
J Mol Biol ; 426(14): 2567-2579, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24816392

RESUMO

MUC2 is the major gel-forming mucin of the colon forming a protective gel barrier organized into an inner stratified and an outer loose layer. The MUC2 N-terminus (D1-D2-D'D3 domains) has a dual function in building a net-like structure by disulfide-bonded trimerization and packing the MUC2 polymer into an N-terminal concatenated polygonal platform with the C-termini extending perpendicularly by pH- and calcium-dependent interactions. We studied the N-terminal D'D3 domain by producing three recombinant variants, with or without Myc tag and GFP (green fluorescent protein), and analyzed these by gel filtration, electron microscopy and single particle image processing. The three variants were all trimers when analyzed upon denaturing conditions but eluted as hexamers upon gel filtration under native conditions. Studies by electron microscopy and three-dimensional maps revealed cage-like structures with 2- and 3-fold symmetries. The structure of the MUC2 D3 domain confirms that the MUC2 mucin forms branched net-like structures. This suggests that the MUC2 mucin is stored with two N-terminal concatenated ring platforms turned by 180° against each other, implicating that every second unfolded MUC2 net in mature mucus is turned upside down.


Assuntos
Mucina-2/química , Mucina-2/metabolismo , Animais , Células CHO , Colo/química , Colo/metabolismo , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imageamento Tridimensional , Mucosa Intestinal/metabolismo , Microscopia Eletrônica , Mucina-2/genética , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Proc Natl Acad Sci U S A ; 107(44): 18844-9, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20956336

RESUMO

The HIV-1 spike is a trimer of the transmembrane gp41 and the peripheral gp120 subunit pair. It is activated for virus-cell membrane fusion by binding sequentially to CD4 and to a chemokine receptor. Here we have studied the structural transition of the trimeric spike during the activation process. We solubilized and isolated unliganded and CD4-bound spikes from virus-like particles and used cryoelectron microscopy to reconstruct their 3D structures. In order to increase the yield and stability of the spike, we used an endodomain deleted and gp120-gp41 disulfide-linked variant. The unliganded spike displayed a hollow cage-like structure where the gp120-gp41 protomeric units formed a roof and bottom, and separated lobes and legs on the sides. The tripod structure was verified by fitting the recent atomic core structure of gp120 with intact N- and C-terminal ends into the spike density map. This defined the lobe as gp120 core, showed that the legs contained the polypeptide termini, and suggested the deleted variable loops V1/V2 and V3 to occupy the roof and gp41 the bottom. CD4 binding shifted the roof density peripherally and condensed the bottom density centrally. Fitting with a V3 containing gp120 core suggested that the V1/V2 loops in the roof were displaced laterally and the V3 lifted up, while the core and leg were kept in place. The loop displacements probably prepared the spike for coreceptor interaction and roof opening so that a new fusion-active gp41 structure, assembled at the center of the cage bottom, could reach the target membrane.


Assuntos
Antígenos CD4 , Proteína gp120 do Envelope de HIV , Proteína gp41 do Envelope de HIV , HIV-1/ultraestrutura , Imageamento Tridimensional , Modelos Moleculares , Microscopia Crioeletrônica , HIV-1/química , Humanos
5.
EMBO J ; 27(20): 2799-808, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18800055

RESUMO

The activity of the membrane fusion protein Env of Moloney mouse leukaemia virus is controlled by isomerization of the disulphide that couples its transmembrane (TM) and surface (SU) subunits. We have arrested Env activation at a stage prior to isomerization by alkylating the active thiol in SU and compared the structure of isomerization-arrested Env with that of native Env. Env trimers of respective form were isolated from solubilized particles by sedimentation and their structures were reconstructed from electron microscopic images of both vitrified and negatively stained samples. We found that the protomeric unit of both trimers formed three protrusions, a top, middle and a lower one. The atomic structure of the receptor-binding domain of SU fitted into the upper protrusion. This was formed similar to a bent finger. Significantly, in native Env the tips of the fingers were directed against each other enclosing a cavity below, whereas they had turned outward in isomerization-arrested Env transforming the cavity into an open well. This might subsequently guide the fusion peptides in extended TM subunits into the target membrane.


Assuntos
Produtos do Gene env/química , Produtos do Gene env/fisiologia , Vírus da Leucemia Murina/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Membrana Celular/metabolismo , Microscopia Crioeletrônica/métodos , Produtos do Gene env/metabolismo , Genes env , Processamento de Imagem Assistida por Computador , Camundongos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Ligação Proteica/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA