Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5969, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216795

RESUMO

Targeted protein degradation offers an alternative modality to classical inhibition and holds the promise of addressing previously undruggable targets to provide novel therapeutic options for patients. Heterobifunctional molecules co-recruit a target protein and an E3 ligase, resulting in ubiquitylation and proteosome-dependent degradation of the target. In the clinic, the oral route of administration is the option of choice but has only been achieved so far by CRBN- recruiting bifunctional degrader molecules. We aimed to achieve orally bioavailable molecules that selectively degrade the BAF Chromatin Remodelling complex ATPase SMARCA2 over its closely related paralogue SMARCA4, to allow in vivo evaluation of the synthetic lethality concept of SMARCA2 dependency in SMARCA4-deficient cancers. Here we outline structure- and property-guided approaches that led to orally bioavailable VHL-recruiting degraders. Our tool compound, ACBI2, shows selective degradation of SMARCA2 over SMARCA4 in ex vivo human whole blood assays and in vivo efficacy in SMARCA4-deficient cancer models. This study demonstrates the feasibility for broadening the E3 ligase and physicochemical space that can be utilised for achieving oral efficacy with bifunctional molecules.


Assuntos
Adenosina Trifosfatases , Fatores de Transcrição , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
2.
Life (Basel) ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34575120

RESUMO

Enteropathogenic (EPEC) and Enterohemorrhagic (EHEC) Escherichia coli are considered emerging zoonotic pathogens of worldwide distribution. The pathogenicity of the bacteria is conferred by multiple virulence determinants, including the locus of enterocyte effacement (LEE) pathogenicity island, which encodes a type III secretion system (T3SS) and effector proteins, including the multifunctional secreted effector protein (EspF). EspF sequences differ between EPEC and EHEC serotypes in terms of the number and residues of SH3-binding polyproline-rich repeats and N-terminal localization sequence. The aim of this study was to discover additional cellular interactions of EspF that may play important roles in E. coli colonization using the Yeast two-hybrid screening system (Y2H). Y2H screening identified the anaphase-promoting complex inhibitor Mitotic Arrest-Deficient 2 Like 2 (MAD2L2) as a host protein that interacts with EspF. Using LUMIER assays, MAD2L2 was shown to interact with EspF variants from EHEC O157:H7 and O26:H11 as well as EPEC O127:H6. MAD2L2 is targeted by the non-homologous Shigella effector protein invasion plasmid antigen B (IpaB) to halt the cell cycle and limit epithelial cell turnover. Therefore, we postulate that interactions between EspF and MAD2L2 serve a similar function in promoting EPEC and EHEC colonization, since cellular turnover is a key method for bacteria removal from the epithelium. Future work should investigate the biological importance of this interaction that could promote the colonization of EPEC and EHEC E. coli in the host.

3.
Curr Opin Pharmacol ; 57: 175-183, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33799000

RESUMO

Small-molecule targeted protein degraders have in recent years made a great impact on the strategies of many industry and academic cancer research endeavours. We seek here to provide a concise perspective on the opportunities and challenges that lie ahead for bifunctional degrader molecules, so-called 'Proteolysis Targeting Chimeras (PROTACs),' in the context of cancer therapy. We highlight high-profile studies that support the potential for PROTAC approaches to broaden drug target scope, address drug resistance, enhance target selectivity and provide tissue specificity, but also assess where the modality is yet to fully deliver in these contexts. Future opportunities presented by the unique bifunctional nature of these molecules are also discussed.


Assuntos
Reagentes de Ligações Cruzadas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Proteólise , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia
4.
Oncotarget ; 11(9): 875-890, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32180900

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphomas worldwide and is characterized by a high diversity of genetic and molecular alterations. Chromosomal translocations and mutations leading to deregulated expression of the transcriptional repressor BCL6 occur in a significant fraction of DLBCL patients. An oncogenic role of BCL6 in the initiation of DLBCL has been shown as the constitutive expression of BCL6 in mice recapitulates the pathogenesis of human DLBCL. However, the role of BCL6 in tumor maintenance remains poorly investigated due to the absence of suitable genetic models and limitations of pharmacological inhibitors. Here, we have utilized tetracycline-inducible CRISPR/Cas9 mutagenesis to study the consequences of BCL6 deletion in established DLBCL models in culture and in vivo. We show that BCL6 knock-out in SU-DHL-4 cells in vitro results in an anti-proliferative response 4-7 days after Cas9 induction that was characterized by cell cycle (G1) arrest. Conditional BCL6 deletion in established DLBCL tumors in vivo induced a significant tumor growth inhibition with initial tumor stasis followed by slow tumor growth kinetics. Our findings support a role of BCL6 in the maintenance of lymphoma growth and showcase the utility of inducible CRISPR/Cas9 systems for probing oncogene addiction.

6.
Proc Natl Acad Sci U S A ; 116(32): 15823-15829, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31332011

RESUMO

The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/química , Proteínas Proto-Oncogênicas p21(ras)/química , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Nanopartículas/química
7.
Nat Chem Biol ; 15(8): 846, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267096

RESUMO

In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read "The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis12,13." The affected text of the right column should read "SMARCA2/4BD inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel-Lindau (VHL) or cereblon5,6,10,11,25,26,27." The errors have been corrected in the PDF version of the paper.

8.
Nat Chem Biol ; 15(7): 672-680, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31178587

RESUMO

Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Estrutura Molecular , Proteínas Nucleares/metabolismo
9.
J Med Chem ; 62(5): 2508-2520, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30739444

RESUMO

Focal adhesion tyrosine kinase (PTK2) is often overexpressed in human hepatocellular carcinoma (HCC), and several reports have linked PTK2 depletion and/or pharmacological inhibition to reduced tumorigenicity. However, the clinical relevance of targeting PTK2 still remains to be proven. Here, we present two highly selective and functional PTK2 proteolysis-targeting chimeras utilizing von Hippel-Lindau and cereblon ligands to hijack E3 ligases for PTK2 degradation. BI-3663 (cereblon-based) degrades PTK2 with a median DC50 of 30 nM to >80% across a panel of 11 HCC cell lines. Despite effective PTK2 degradation, these compounds did not phenocopy the reported antiproliferative effects of PTK2 depletion in any of the cell lines tested. By disclosing these compounds, we hope to provide valuable tools for the study of PTK2 degradation across different biological systems.


Assuntos
Quinase 1 de Adesão Focal/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Humanos , Ligantes , Proteólise , Interferência de RNA
10.
J Med Chem ; 62(2): 699-726, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30540463

RESUMO

Developing PROTACs to redirect the ubiquitination activity of E3 ligases and potently degrade a target protein within cells can be a lengthy and unpredictable process, and it remains unclear whether any combination of E3 and target might be productive for degradation. We describe a probe-quality degrader for a ligase-target pair deemed unsuitable: the von Hippel-Lindau (VHL) and BRD9, a bromodomain-containing subunit of the SWI/SNF chromatin remodeling complex BAF. VHL-based degraders could be optimized from suboptimal compounds in two rounds by systematically varying conjugation patterns and linkers and monitoring cellular degradation activities, kinetic profiles, and ubiquitination, as well as ternary complex formation thermodynamics. The emerged structure-activity relationships guided the discovery of VZ185, a potent, fast, and selective degrader of BRD9 and of its close homolog BRD7. Our findings qualify a new chemical tool for BRD7/9 knockdown and provide a roadmap for PROTAC development against seemingly incompatible target-ligase combinations.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Desenho de Fármacos , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas Cromossômicas não Histona/química , Células HeLa , Humanos , Cinética , Ligação Proteica , Proteólise , Proteoma/análise , Relação Estrutura-Atividade , Termodinâmica , Fatores de Transcrição/química , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/química
11.
Methods Mol Biol ; 1714: 119-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177859

RESUMO

Recent structural, biochemical, and functional studies have led to the notion that many of the post-receptor signaling complexes in innate immunity have a multimeric, multi-protein architecture whose hierarchical assembly is vital for function. The Myddosome is a post-receptor complex in the cytoplasmic signaling of Toll-like receptors (TLR) and the Interleukin-1 receptor (IL-1R), involving the proteins MyD88, IL-1R-associated kinase 4 (IRAK4), and IRAK2. Its importance is strikingly illustrated by the fact that rare germline mutations in MYD88 causing high susceptibility to infections are characterized by failure to assemble Myddosomes; conversely, gain-of-function MYD88 mutations leading to oncogenic hyperactivation of NF-κB show increased Myddosome formation. Reliable methods to probe Myddosome formation experimentally are therefore vital to further study the properties of this important post-receptor complex and its role in innate immunity, such as its regulation by posttranslational modification. Compared to structural and biochemical analyses, luminescence-based mammalian interactome mapping (LUMIER) is a straightforward, automatable, quantifiable, and versatile technique to study protein-protein interactions in a physiologically relevant context. We adapted LUMIER for Myddosome analysis and provide here a basic background of this technique, suitable experimental protocols, and its potential for medium-throughput screening. The principles presented herein can be adapted to other signaling pathways.


Assuntos
Medições Luminescentes/métodos , Complexos Multiproteicos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Mapas de Interação de Proteínas , Animais , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Receptores de Interleucina-1/metabolismo , Transdução de Sinais
12.
Cell Rep ; 20(12): 2860-2875, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930682

RESUMO

The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL). Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.


Assuntos
Proteólise , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Cinética , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Ubiquitinação/efeitos dos fármacos
13.
Nat Chem Biol ; 12(9): 672-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27376689

RESUMO

Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI-SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.


Assuntos
Antineoplásicos/farmacologia , Engenharia Celular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição/antagonistas & inibidores , Alelos , Animais , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Med Chem ; 59(10): 4462-75, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-26914985

RESUMO

Components of the chromatin remodelling switch/sucrose nonfermentable (SWI/SNF) complex are recurrently mutated in tumors, suggesting that altering the activity of the complex plays a role in oncogenesis. However, the role that the individual subunits play in this process is not clear. We set out to develop an inhibitor compound targeting the bromodomain of BRD9 in order to evaluate its function within the SWI/SNF complex. Here, we present the discovery and development of a potent and selective BRD9 bromodomain inhibitor series based on a new pyridinone-like scaffold. Crystallographic information on the inhibitors bound to BRD9 guided their development with respect to potency for BRD9 and selectivity against BRD4. These compounds modulate BRD9 bromodomain cellular function and display antitumor activity in an AML xenograft model. Two chemical probes, BI-7273 (1) and BI-9564 (2), were identified that should prove to be useful in further exploring BRD9 bromodomain biology in both in vitro and in vivo settings.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Piridonas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Piridonas/síntese química , Piridonas/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Plant Physiol ; 168(2): 584-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25926482

RESUMO

The MBW (for R2R3MYB, basic helix-loop-helix [bHLH], and WD40) genes comprise an evolutionarily conserved gene cassette that regulates several traits such as (pro)anthocyanin and anthocyanin biosynthesis and epidermal cell differentiation in plants. Trichome differentiation in Arabidopsis (Arabidopsis thaliana) is governed by GLABRA1 (GL1; R2R3MYB), GL3 (bHLH), and transparent TESTA GLABRA1 (TTG1; WD40). They are thought to form a trimeric complex that acts as a transcriptional activation complex. We provide evidence that these three MBW proteins form either GL1 GL3 or GL3 TTG1 dimers. The formation of each dimer is counteracted by the respective third protein in yeast three-hybrid assays, pulldown experiments (luminescence-based mammalian interactome), and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. We further show that two target promoters, Triptychon (TRY) and CAPRICE (CPC), are differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3. Our data suggest that the transcriptional activation by the MBW complex involves alternative complex formation and that the two dimers can differentially regulate downstream genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ligação Competitiva , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Microscopia de Fluorescência , Modelos Biológicos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
16.
Infect Immun ; 79(11): 4716-29, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875965

RESUMO

The EspF protein is secreted by the type III secretion system of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). EspF sequences differ between EHEC O157:H7, EHEC O26:H11, and EPEC O127:H6 in terms of the number of SH3-binding polyproline-rich repeats and specific residues in these regions, as well as residues in the amino domain involved in cellular localization. EspF(O127) is important for the inhibition of phagocytosis by EPEC and also limits EPEC translocation through antigen-sampling cells (M cells). EspF(O127) has been shown to have effects on cellular organelle function and interacts with several host proteins, including N-WASP and sorting nexin 9 (SNX9). In this study, we compared the capacities of different espF alleles to inhibit (i) bacterial phagocytosis by macrophages, (ii) translocation through an M-cell coculture system, and (iii) uptake by and translocation through cultured bovine epithelial cells. The espF gene from E. coli serotype O157 (espF(O157)) allele was significantly less effective at inhibiting phagocytosis and also had reduced capacity to inhibit E. coli translocation through a human-derived in vitro M-cell coculture system in comparison to espF(O127) and espF(O26). In contrast, espF(O157) was the most effective allele at restricting bacterial uptake into and translocation through primary epithelial cells cultured from the bovine terminal rectum, the predominant colonization site of EHEC O157 in cattle and a site containing M-like cells. Although LUMIER binding assays demonstrated differences in the interactions of the EspF variants with SNX9 and N-WASP, we propose that other, as-yet-uncharacterized interactions contribute to the host-based variation in EspF activity demonstrated here.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Macrófagos/fisiologia , Fagocitose/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Bovinos , Células Cultivadas , Clonagem Molecular , Técnicas de Cocultura , Células Epiteliais/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Canamicina/farmacologia , Dados de Sequência Molecular
17.
Circ Res ; 107(10): 1253-64, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20847312

RESUMO

RATIONALE AND OBJECTIVE: The M-band represents a transverse structure in the center of the sarcomeric A-band and provides an anchor for the myosin-containing thick filaments. In contrast to other sarcomeric structures, eg, the Z-disc, only few M-band-specific proteins have been identified to date, and its exact molecular composition remains unclear. METHODS AND RESULTS: Using a bioinformatic approach to identify novel heart- and muscle-specific genes, we found a leucine rich protein, myomasp (Myosin-interacting, M-band-associated stress-responsive protein)/LRRC39. RT-PCR and Northern and Western blot analyses confirmed a cardiac-enriched expression pattern, and immunolocalization of myomasp revealed a strong and specific signal at the sarcomeric M-band. Yeast 2-hybrid screens, as well as coimmunoprecipitation experiments, identified the C terminus of myosin heavy chain (MYH)7 as an interaction partner for myomasp. Knockdown of myomasp in neonatal rat ventricular myocytes (NRVCMs) led to a significant upregulation of the stretch-sensitive genes GDF-15 and BNP. Conversely, the expression of MYH7 and the M-band proteins myomesin-1 and -2 was found to be markedly reduced. Mechanistically, knockdown of myomasp in NRVCM led to a dose-dependent suppression of serum response factor-dependent gene expression, consistent with earlier observations linking the M-band to serum response factor-mediated signaling. Finally, downregulation of myomasp/LRRC39 in spontaneously beating engineered heart tissue constructs resulted in significantly lower force generation and reduced fractional shortening. Likewise, knockdown of the myomasp/LRRC39 ortholog in zebrafish resulted in severely impaired heart function and cardiomyopathy in vivo. CONCLUSIONS: These findings reveal myomasp as a previously unrecognized component of an M-band-associated signaling pathway that regulates cardiomyocyte gene expression in response to biomechanical stress.


Assuntos
Proteínas de Transporte/metabolismo , Mecanotransdução Celular , Proteínas Musculares/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteínas/metabolismo , Sarcômeros/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Northern Blotting , Western Blotting , Miosinas Cardíacas/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Proteínas de Transporte/genética , Células Cultivadas , Clonagem Molecular , Conectina , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Proteínas de Repetições Ricas em Leucina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas/genética , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Resposta Sérica/metabolismo , Estresse Mecânico , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Peixe-Zebra
18.
Mol Cell Proteomics ; 9(1): 1-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19674966

RESUMO

Protein affinity reagents (PARs), most commonly antibodies, are essential reagents for protein characterization in basic research, biotechnology, and diagnostics as well as the fastest growing class of therapeutics. Large numbers of PARs are available commercially; however, their quality is often uncertain. In addition, currently available PARs cover only a fraction of the human proteome, and their cost is prohibitive for proteome scale applications. This situation has triggered several initiatives involving large scale generation and validation of antibodies, for example the Swedish Human Protein Atlas and the German Antibody Factory. Antibodies targeting specific subproteomes are being pursued by members of Human Proteome Organisation (plasma and liver proteome projects) and the United States National Cancer Institute (cancer-associated antigens). ProteomeBinders, a European consortium, aims to set up a resource of consistently quality-controlled protein-binding reagents for the whole human proteome. An ultimate PAR database resource would allow consumers to visit one on-line warehouse and find all available affinity reagents from different providers together with documentation that facilitates easy comparison of their cost and quality. However, in contrast to, for example, nucleotide databases among which data are synchronized between the major data providers, current PAR producers, quality control centers, and commercial companies all use incompatible formats, hindering data exchange. Here we propose Proteomics Standards Initiative (PSI)-PAR as a global community standard format for the representation and exchange of protein affinity reagent data. The PSI-PAR format is maintained by the Human Proteome Organisation PSI and was developed within the context of ProteomeBinders by building on a mature proteomics standard format, PSI-molecular interaction, which is a widely accepted and established community standard for molecular interaction data. Further information and documentation are available on the PSI-PAR web site.


Assuntos
Bases de Dados de Proteínas/normas , Proteoma/análise , Sistemas de Gerenciamento de Base de Dados/normas , Humanos , Cooperação Internacional , Proteômica/métodos , Terminologia como Assunto
19.
PLoS Pathog ; 5(9): e1000570, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730696

RESUMO

Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species.


Assuntos
Herpesviridae/genética , Mapeamento de Interação de Proteínas/métodos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Análise por Conglomerados , Evolução Molecular , Células HeLa , Herpesviridae/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 3/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Imuno-Histoquímica , Muromegalovirus/genética , Filogenia , Transdução de Sinais , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Vírion/metabolismo
20.
Drug Discov Today ; 12(19-20): 860-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17933688

RESUMO

Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.


Assuntos
Desenho de Fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Animais , Sítios de Ligação , Perfilação da Expressão Gênica/métodos , Humanos , Imunoprecipitação , Ligantes , Peptídeos/metabolismo , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Relação Estrutura-Atividade , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA