Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 59(2): 175-186.e8, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38159568

RESUMO

Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG in vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.


Assuntos
Proteínas Hedgehog , Células-Tronco Embrionárias Murinas , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Glândulas Mamárias Animais , Células Epiteliais , Diferenciação Celular , Organoides
2.
J Invest Dermatol ; 143(10): 1872-1876, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37739763

RESUMO

Pluripotent stem cells have the potential to become any cell type, and recently, they have been used to create organoids that can recapitulate several pertinent features of human organs. Skin organoids have been developed that possess many of the crucial accessory organs, including hair follicles, sebaceous glands, nerves, fat, and melanocytes. These skin organoids present the opportunity to study skin development and disease as well as perform screens to identify new drug candidates. In the future, skin organoids might augment clinical practice by serving as source material for transplantation to treat wounds or other conditions. Nevertheless, several limitations, such as the lengthy differentiation protocol, which can result in heterogeneous products, must first be addressed before the full potential of skin organoids can be realized. The purpose of this article is to provide a broad overview of skin organoids so that a broader audience can become familiar with this technology, which has important implications for dermatologic research and medicine.


Assuntos
Dermatologia , Células-Tronco Pluripotentes , Humanos , Pele , Organoides , Glândulas Sebáceas
3.
Artigo em Inglês | MEDLINE | ID: mdl-34964656

RESUMO

Introduction: The coronavirus disease 2019 pandemic has led to concerns over transmission risk from head and neck operations including facial cosmetic surgeries. Objectives: To quantify droplet and aerosol generation from rhinoplasty techniques in a human anatomic specimen model using fluorescein staining and an optical particle sizer. Methods: Noses of human anatomic specimens were infiltrated using 0.1% fluorescein. Droplets and aerosols were measured during rhinoplasty techniques including opening the skin-soft tissue envelope, monopolar electrocautery, endonasal rasping, endonasal osteotomy, and percutaneous osteotomy. Results: No visible droplet contamination was observed for any rhinoplasty techniques investigated. Compared with the negative control of anterior rhinoscopy, total 0.300-10.000 µm aerosols were increased after monopolar electrocautery (p < 0.001) and endonasal rasp (p = 0.003). Opening the skin-soft tissue envelope, endonasal osteotomies, and percutaneous osteotomies did not generate a detectable increase in aerosols (p > 0.15). Discussion and Conclusions: In this investigation, droplets were not observed under ultraviolet light, and aerosol generation was noted only with cautery and endonasal rasping.

4.
Am J Otolaryngol ; 42(4): 102970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667797

RESUMO

INTRODUCTION: The highly contagious COVID-19 has resulted in millions of deaths worldwide. Physicians performing orbital procedures may be at increased risk of occupational exposure to the virus due to exposure to secretions. The goal of this study is to measure the droplet and aerosol production during repair of the inferior orbital rim and trial a smoke-evacuating electrocautery handpiece as a mitigation device. MATERIAL AND METHODS: The inferior rim of 6 cadaveric orbits was approached transconjunctivally using either standard or smoke-evacuator electrocautery and plated using a high-speed drill. Following fluorescein inoculation, droplet generation was measured by counting under ultraviolet-A (UV-A) light against a blue background. Aerosol generation from 0.300-10.000 µm was measured using an optical particle sizer. Droplet and aerosol generation was compared against retraction of the orbital soft tissue as a negative control. RESULTS: No droplets were observed following the orbital approach using electrocautery. Visible droplets were observed after plating with a high-speed drill for 3 of 6 orbits. Total aerosol generation was significantly higher than negative control following the use of standard electrocautery. Use of smoke-evacuator electrocautery was associated with significantly lower aerosol generation in 2 of 3 size groups and in total. There was no significant increase in total aerosols associated with high-speed drilling. DISCUSSION AND CONCLUSIONS: Droplet generation for orbital repair was present only following plating with high-speed drill. Aerosol generation during standard electrocautery was significantly reduced using a smoke-evacuating electrocautery handpiece. Aerosols were not significantly increased by high-speed drilling.


Assuntos
COVID-19/transmissão , Eletrocoagulação/efeitos adversos , Transmissão de Doença Infecciosa do Paciente para o Profissional , Exposição Ocupacional/efeitos adversos , Órbita/cirurgia , SARS-CoV-2/patogenicidade , Aerossóis , COVID-19/prevenção & controle , Cadáver , Humanos , Medição de Risco
5.
Nature ; 582(7812): 399-404, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494013

RESUMO

The skin is a multilayered organ, equipped with appendages (that is, follicles and glands), that is critical for regulating body temperature and the retention of bodily fluids, guarding against external stresses and mediating the sensation of touch and pain1,2. Reconstructing appendage-bearing skin in cultures and in bioengineered grafts is a biomedical challenge that has yet to be met3-9. Here we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use stepwise modulation of the transforming growth factor ß (TGFß) and fibroblast growth factor (FGF) signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During an incubation period of 4-5 months, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis and pigmented hair follicles that are equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking the neural circuitry associated with human touch. Single-cell RNA sequencing and direct comparison to fetal specimens suggest that the skin organoids are equivalent to the facial skin of human fetuses in the second trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted onto nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate that our skin organoids will provide a foundation for future studies of human skin development, disease modelling and reconstructive surgery.


Assuntos
Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Pele/citologia , Animais , Ectoderma/citologia , Feminino , Cabelo/transplante , Cor de Cabelo , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/inervação , Folículo Piloso/transplante , Cabeça , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Organoides/crescimento & desenvolvimento , Organoides/inervação , Organoides/transplante , RNA-Seq , Análise de Célula Única , Pele/crescimento & desenvolvimento , Pele/inervação , Transplante de Pele
6.
Cell Rep ; 22(1): 242-254, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298425

RESUMO

The mammalian hair follicle arises during embryonic development from coordinated interactions between the epidermis and dermis. It is currently unclear how to recapitulate hair follicle induction in pluripotent stem cell cultures for use in basic research studies or in vitro drug testing. To date, generation of hair follicles in vitro has only been possible using primary cells isolated from embryonic skin, cultured alone or in a co-culture with stem cell-derived cells, combined with in vivo transplantation. Here, we describe the derivation of skin organoids, constituting epidermal and dermal layers, from a homogeneous population of mouse pluripotent stem cells in a 3D culture. We show that skin organoids spontaneously produce de novo hair follicles in a process that mimics normal embryonic hair folliculogenesis. This in vitro model of skin development will be useful for studying mechanisms of hair follicle induction, evaluating hair growth or inhibitory drugs, and modeling skin diseases.


Assuntos
Embrião de Mamíferos , Folículo Piloso , Células-Tronco Pluripotentes Induzidas , Organoides , Animais , Técnicas de Cultura de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Folículo Piloso/citologia , Folículo Piloso/embriologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Organoides/citologia , Organoides/embriologia
7.
PLoS One ; 11(9): e0162508, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27607106

RESUMO

Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles-a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo.


Assuntos
Orelha Interna/metabolismo , Organoides/metabolismo , Técnicas de Cultura de Tecidos/métodos , Via de Sinalização Wnt , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Agregação Celular/efeitos dos fármacos , Orelha Interna/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Miosina VIIa , Miosinas/metabolismo , Organoides/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Fatores de Transcrição SOXB1/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
8.
PLoS One ; 10(8): e0135060, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26258652

RESUMO

Nervous system development relies on the generation of precise numbers of excitatory and inhibitory neurons. The homeodomain transcription factor, T-cell leukemia 3 (Tlx3), functions as the master neuronal fate regulator by instructively promoting the specification of glutamatergic excitatory neurons and suppressing the specification of gamma-aminobutyric acid (GABAergic) neurons. However, how Tlx3 promotes glutamatergic neuronal subtype specification is poorly understood. In this study, we found that Tlx3 directly interacts with the epigenetic co-activator cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP) and that the Tlx3 homeodomain is essential for this interaction. The interaction between Tlx3 and CBP was enhanced by the three amino acid loop extension (TALE)-class homeodomain transcription factor, pre-B-cell leukemia transcription factor 3 (Pbx3). Using mouse embryonic stem (ES) cells stably expressing Tlx3, we found that the interaction between Tlx3 and CBP became detectable only after these Tlx3-expressing ES cells were committed to a neural lineage, which coincided with increased Pbx3 expression during neural differentiation from ES cells. Forced expression of mutated Tlx3 lacking the homeodomain in ES cells undergoing neural differentiation resulted in significantly reduced expression of glutamatergic neuronal subtype markers, but had little effect on the expression on pan neural markers. Collectively, our results strongly suggest that functional interplay between Tlx3 and CBP plays a critical role in neuronal subtype specification, providing novel insights into the epigenetic regulatory mechanism that modulates the transcriptional efficacy of a selective set of neuronal subtype-specific genes during differentiation.


Assuntos
Proteína de Ligação a CREB/genética , Células-Tronco Embrionárias/metabolismo , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Neurônios/metabolismo , Animais , Proteína de Ligação a CREB/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Cromatina/química , Cromatina/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias/citologia , Epigênese Genética , Corantes Fluorescentes , Fura-2 , Neurônios GABAérgicos/citologia , Ácido Glutâmico/metabolismo , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Neurônios/citologia , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
9.
Nat Protoc ; 9(6): 1229-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24784820

RESUMO

This protocol describes a culture system in which inner-ear sensory tissue is produced from mouse embryonic stem (ES) cells under chemically defined conditions. This model is amenable to basic and translational investigations into inner ear biology and regeneration. In this protocol, mouse ES cells are aggregated in 96-well plates in medium containing extracellular matrix proteins to promote epithelialization. During the first 14 d, a series of precisely timed protein and small-molecule treatments sequentially induce epithelia that represent the mouse embryonic non-neural ectoderm, preplacodal ectoderm and otic vesicle epithelia. Ultimately, these tissues develop into cysts with a pseudostratified epithelium containing inner ear hair cells and supporting cells after 16-20 d. Concurrently, sensory-like neurons generate synapse-like structures with the derived hair cells. We have designated the stem cell-derived epithelia harboring hair cells, supporting cells and sensory-like neurons as inner ear organoids. This method provides a reproducible and scalable means to generate inner ear sensory tissue in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Orelha Interna/crescimento & desenvolvimento , Células-Tronco Embrionárias/citologia , Organoides/crescimento & desenvolvimento , Animais , Células-Tronco Embrionárias/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Células Ciliadas Auditivas/citologia , Camundongos
10.
Nature ; 500(7461): 217-21, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23842490

RESUMO

The inner ear contains sensory epithelia that detect head movements, gravity and sound. It is unclear how to develop these sensory epithelia from pluripotent stem cells, a process that will be critical for modelling inner ear disorders or developing cell-based therapies for profound hearing loss and balance disorders. So far, attempts to derive inner ear mechanosensitive hair cells and sensory neurons have resulted in inefficient or incomplete phenotypic conversion of stem cells into inner-ear-like cells. A key insight lacking from these previous studies is the importance of the non-neural and preplacodal ectoderm, two critical precursors during inner ear development. Here we report the stepwise differentiation of inner ear sensory epithelia from mouse embryonic stem cells (ESCs) in three-dimensional culture. We show that by recapitulating in vivo development with precise temporal control of signalling pathways, ESC aggregates transform sequentially into non-neural, preplacodal and otic-placode-like epithelia. Notably, in a self-organized process that mimics normal development, vesicles containing prosensory cells emerge from the presumptive otic placodes and give rise to hair cells bearing stereocilia bundles and a kinocilium. Moreover, these stem-cell-derived hair cells exhibit functional properties of native mechanosensitive hair cells and form specialized synapses with sensory neurons that have also arisen from ESCs in the culture. Finally, we demonstrate how these vesicles are structurally and biochemically comparable to developing vestibular end organs. Our data thus establish a new in vitro model of inner ear differentiation that can be used to gain deeper insight into inner ear development and disorder.


Assuntos
Diferenciação Celular , Orelha Interna/citologia , Células Ciliadas Auditivas Internas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células , Orelha Interna/embriologia , Sinapses Elétricas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Neurogênese , Proteínas Recombinantes/metabolismo
11.
Blood ; 120(14): 2868-78, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22889758

RESUMO

Erythropoiesis is a dynamic, multistep process whereby hematopoietic stem cells differentiate toward a progressively committed erythroid lineage through intermediate progenitors. Although several downstream signaling molecules have been identified that regulate steady-state erythropoiesis, the major regulators under conditions of stress remain poorly defined. Rho kinases (ROCKs) belong to a family of serine/threonine kinases. Using gene-targeted ROCK1-deficient mice, we show that lack of ROCK1 in phenylhydrazine-induced oxidative stress model results in enhanced recovery from hemolytic anemia as well as enhanced splenic stress erythropoiesis compared with control mice. Deficiency of ROCK1 also results in enhanced survival, whereas wild-type mice die rapidly in response to stress. Enhanced survivability of ROCK1-deficient mice is associated with reduced level of reactive oxygen species. BM transplantation studies revealed that enhanced stress erythropoiesis in ROCK1-deficient mice is stem cell autonomous. We show that ROCK1 binds to p53 and regulates its stability and expression. In the absence of ROCK1, p53 phosphorylation and expression is significantly reduced. Our findings reveal that ROCK1 functions as a physiologic regulator of p53 under conditions of erythroid stress. These findings are expected to offer new perspectives on stress erythropoiesis and may provide a potential therapeutic target in human disease characterized by anemia.


Assuntos
Anemia Hemolítica/mortalidade , Anemia Hemolítica/prevenção & controle , Apoptose , Eritropoese/fisiologia , Estresse Oxidativo/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Quinases Associadas a rho/fisiologia , Anemia Hemolítica/induzido quimicamente , Animais , Antimetabólitos Antineoplásicos/toxicidade , Western Blotting , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patologia , Eritropoese/efeitos dos fármacos , Eritropoetina/sangue , Feminino , Citometria de Fluxo , Fluoruracila/toxicidade , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fenil-Hidrazinas/toxicidade , Fosforilação , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética
12.
PLoS One ; 7(1): e28979, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22238586

RESUMO

Stem cell factor (SCF) mediated KIT receptor activation plays a pivotal role in mast cell growth, maturation and survival. However, the signaling events downstream from KIT are poorly understood. Mast cells express multiple regulatory subunits of class 1(A) PI3Kinase (PI3K) including p85α, p85ß, p50α, and p55α. While it is known that PI3K plays an essential role in mast cells; the precise mechanism by which these regulatory subunits impact specific mast cell functions including growth, survival and cycling are not known. We show that loss of p85α impairs the growth, survival and cycling of mast cell progenitors (MCp). To delineate the molecular mechanism (s) by which p85α regulates mast cell growth, survival and cycling, we performed microarray analyses to compare the gene expression profile of MCps derived from WT and p85α-deficient mice in response to SCF stimulation. We identified 151 unique genes exhibiting altered expression in p85α-deficient cells in response to SCF stimulation compared to WT cells. Functional categorization based on DAVID bioinformatics tool and Ingenuity Pathway Analysis (IPA) software relates the altered genes due to lack of p85α to transcription, cell cycle, cell survival, cell adhesion, cell differentiation, and signal transduction. Our results suggest that p85α is involved in mast cell development through regulation of expression of growth, survival and cell cycle related genes.


Assuntos
Diferenciação Celular/genética , Classe Ia de Fosfatidilinositol 3-Quinase/fisiologia , Genes cdc/fisiologia , Mastócitos/fisiologia , Animais , Ciclo Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Células Cultivadas , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Análise por Conglomerados , Mastócitos/metabolismo , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/classificação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
Stem Cells ; 29(5): 836-46, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21374761

RESUMO

Wnt/ß-catenin signaling promotes neural differentiation by activation of the neuron-specific transcription factors, Neurogenin1 (Ngn1), NeuroD, and Brn3a, in the nervous system. As neurons in cranial sensory ganglia and dorsal root ganglia transiently express Ngn1, NeuroD, and Brn3a during embryonic development, we hypothesized that Wnt proteins could instructively promote a sensory neuronal fate from mesenchymal stem cells (MSCs) directed to differentiate into neurons. Consistent with our hypothesis, Wnt1 induced expression of sensory neuron markers including Ngn1, NeuroD, and Brn3a, as well as glutamatergic markers in neurally induced MSCs in vitro and promoted engraftment of transplanted MSCs in the inner ear bearing selective loss of sensory neurons in vivo. Given the consensus function of T-cell leukemia 3 (Tlx3), as a glutamatergic selector gene, we postulated that the effects of canonical Wnt signaling on sensory neuron and glutamatergic marker gene expression in MSCs may be mediated by Tlx3. We first confirmed that Wnt1 indeed upregulates Tlx3 expression, which can be suppressed by canonical Wnt inhibitors. Next, our chromatin immunoprecipitation assays revealed that T-cell factor 3/4, Wnt-activated DNA binding proteins, interact with a regulatory region of Tlx3 in MSCs after neural induction. Furthermore, we demonstrated that forced expression of Tlx3 in MSCs induced sensory and glutamatergic neuron markers after neural induction. Together, these results identify Tlx3 as a novel target for canonical Wnt signaling that confers somatic stem cells with a sensory neuron phenotype upon neural induction.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteína Wnt1/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Imunoprecipitação da Cromatina , Dano ao DNA/genética , Dano ao DNA/fisiologia , Proteínas de Homeodomínio/genética , Humanos , Immunoblotting , Fagocitose/genética , Fagocitose/fisiologia , Reação em Cadeia da Polimerase , Telômero/genética , Proteína Wnt1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA