Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell Rep ; 43(5): 114122, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38652659

RESUMO

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.


Assuntos
Herpesvirus Humano 1 , Nucleotídeos Cíclicos , Animais , Humanos , Células HEK293 , Herpes Simples/virologia , Herpes Simples/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Nucleotídeos Cíclicos/metabolismo , Proteínas Virais/metabolismo
2.
Cell Rep Med ; 5(2): 101412, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340723

RESUMO

Understanding cancer immunobiology has been hampered by difficulty identifying cancer-specific T cells. Merkel cell polyomavirus (MCPyV) causes most Merkel cell carcinomas (MCCs). All patients with virus-driven MCC express MCPyV oncoproteins, facilitating identification of virus (cancer)-specific T cells. We studied MCPyV-specific T cells from 27 patients with MCC using MCPyV peptide-HLA-I multimers, 26-color flow cytometry, single-cell transcriptomics, and T cell receptor (TCR) sequencing. In a prospective clinical trial, higher circulating MCPyV-specific CD8 T cell frequency before anti-PD-1 treatment was strongly associated with 2-year recurrence-free survival (75% if detectable, 0% if undetectable, p = 0.0018; ClinicalTrial.gov: NCT02488759). Intratumorally, such T cells were typically present, but their frequency did not significantly associate with response. Circulating MCPyV-specific CD8 T cells had increased stem/memory and decreased exhaustion signatures relative to their intratumoral counterparts. These results suggest that cancer-specific CD8 T cells in the blood may play a role in anti-PD-1 responses. Thus, strategies that augment their number or mobilize them into tumors could improve outcomes.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/patologia , Linfócitos T CD8-Positivos/patologia , Receptor de Morte Celular Programada 1 , Estudos Prospectivos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Ensaios Clínicos como Assunto
3.
Cell Rep Med ; 5(2): 101390, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340724

RESUMO

Merkel cell carcinoma is a skin cancer often driven by Merkel cell polyomavirus (MCPyV) with high rates of response to anti-PD-1 therapy despite low mutational burden. MCPyV-specific CD8 T cells are implicated in anti-PD-1-associated immune responses and provide a means to directly study tumor-specific T cell responses to treatment. Using mass cytometry and combinatorial tetramer staining, we find that baseline frequencies of blood MCPyV-specific cells correlated with response and survival. Frequencies of these cells decrease markedly during response to therapy. Phenotypes of MCPyV-specific CD8 T cells have distinct expression patterns of CD39, cutaneous lymphocyte-associated antigen (CLA), and CD103. Correspondingly, overall bulk CD39+CLA+ CD8 T cell frequencies in blood correlate with MCPyV-specific cell frequencies and similarly predicted favorable clinical outcomes. Conversely, frequencies of CD39+CD103+ CD8 T cells are associated with tumor burden and worse outcomes. These cell subsets can be useful as biomarkers and to isolate blood-derived tumor-specific T cells.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Oligossacarídeos , Antígeno Sialil Lewis X/análogos & derivados , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/metabolismo , Carcinoma de Célula de Merkel/patologia , Poliomavírus das Células de Merkel/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Biomarcadores/metabolismo
4.
Front Immunol ; 14: 1253568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711623

RESUMO

Introduction: Most cases of Merkel cell carcinoma (MCC), a rare and highly aggressive type of neuroendocrine skin cancer, are associated with Merkel cell polyomavirus (MCPyV) infection. MCPyV integrates into the host genome, resulting in expression of oncoproteins including a truncated form of the viral large T antigen (LT) in infected cells. These oncoproteins are an attractive target for a therapeutic cancer vaccine. Methods: We designed a cancer vaccine that promotes potent, antigen-specific CD4 T cell responses to MCPyV-LT. To activate antigen-specific CD4 T cells in vivo, we utilized our nucleic acid platform, UNITE™ (UNiversal Intracellular Targeted Expression), which fuses a tumor-associated antigen with lysosomal-associated membrane protein 1 (LAMP1). This lysosomal targeting technology results in enhanced antigen presentation and potent antigen-specific T cell responses. LTS220A, encoding a mutated form of MCPyV-LT that diminishes its pro-oncogenic properties, was introduced into the UNITE™ platform. Results: Vaccination with LTS220A-UNITE™ DNA vaccine (ITI-3000) induced antigen-specific CD4 T cell responses and a strong humoral response that were sufficient to delay tumor growth of a B16F10 melanoma line expressing LTS220A. This effect was dependent on the CD4 T cells' ability to produce IFNγ. Moreover, ITI-3000 induced a favorable tumor microenvironment (TME), including Th1-type cytokines and significantly enhanced numbers of CD4 and CD8 T cells as well as NK and NKT cells. Additionally, ITI-3000 synergized with an α-PD-1 immune checkpoint inhibitor to further slow tumor growth and enhance survival. Conclusions: These findings strongly suggest that in pre-clinical studies, DNA vaccination with ITI-3000, using the UNITE™ platform, enhances CD4 T cell responses to MCPyV-LT that result in significant anti-tumor immune responses. These data support the initiation of a first-in-human (FIH) Phase 1 open-label study to evaluate the safety, tolerability, and immunogenicity of ITI-3000 in patients with polyomavirus-positive MCC (NCT05422781).


Assuntos
Vacinas Anticâncer , Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Humanos , Antígenos Virais de Tumores/genética , Linfócitos T CD4-Positivos , Proteína 1 de Membrana Associada ao Lisossomo , Neoplasias Cutâneas/terapia , Microambiente Tumoral , Proteínas de Membrana Lisossomal
5.
Blood Adv ; 7(17): 4728-4737, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516082

RESUMO

Previous studies have demonstrated low rates of seroconversion to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in patients with chronic lymphocytic leukemia (CLL). In this national collaboration of 11 cancer centers in the United States, we aimed to further characterize and understand vaccine-induced immune responses, including T-cell responses, and the impact of CLL therapeutics (#NCT04852822). Eligible patients were enrolled in 2 cohorts (1) at the time of initial vaccination and (2) at the time of booster vaccination. The serologic response rates (anti-S) from 210 patients in the initial vaccination cohort and 117 in the booster vaccination cohort were 56% (95% confidence interval [CI], 50-63) and 68% (95% CI, 60-77), respectively. Compared with patients not on therapy, those receiving B-cell-directed therapy were less likely to seroconvert (odds ratio [OR], 0.27; 95% CI, 0.15-0.49). Persistence of response was observed at 6 months; anti-S titers increased with the administration of booster vaccinations. In the initial vaccination cohort, positive correlations were observed between the quantitative serologic response and CD4 T-cell response for the Wuhan variant and, to a lesser degree, for the Omicron variant (Spearman P = 0.45 Wuhan; P = 0.25 Omicron). In the booster vaccination cohort, positive correlations were observed between serologic responses and CD4 T-cell responses for both variants (P = 0.58 Wuhan; P = 0.57 Omicron) and to a lesser degree for CD8 T-cell responses (P = 0.33 Wuhan; P = 0.22 Omicron). Although no deaths from coronavirus disease 2019 (COVID-19) have been reported after booster vaccinations, patients should use caution as newer variants emerge and escape vaccine-induced immunity. This trial was registered at www.clinicaltrials.gov as #NCT04852822.


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Humanos , Vacinas contra COVID-19 , Leucemia Linfocítica Crônica de Células B/terapia , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos
6.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36252564

RESUMO

BACKGROUND: Merkel cell carcinoma (MCC) often responds to PD-1 pathway blockade, regardless of tumor-viral status (~80% of cases driven by the Merkel cell polyomavirus (MCPyV)). Prior studies have characterized tumor-specific T cell responses to MCPyV, which have typically been CD8, but little is known about the T cell response to UV-induced neoantigens. METHODS: A patient in her mid-50s with virus-negative (VN) MCC developed large liver metastases after a brief initial response to chemotherapy. She received anti-PD-L1 (avelumab) and had a partial response within 4 weeks. Whole exome sequencing (WES) was performed to determine potential neoantigen peptides. Characterization of peripheral blood neoantigen T cell responses was evaluated via interferon-gamma (IFNγ) ELISpot, flow cytometry and single-cell RNA sequencing. Tumor-resident T cells were characterized by multiplexed immunohistochemistry. RESULTS: WES identified 1027 tumor-specific somatic mutations, similar to the published average of 1121 for VN-MCCs. Peptide prediction with a binding cut-off of ≤100 nM resulted in 77 peptides that were synthesized for T cell assays. Although peptides were predicted based on class I HLAs, we identified circulating CD4 T cells targeting 5 of 77 neoantigens. In contrast, no neoantigen-specific CD8 T cell responses were detected. Neoantigen-specific CD4 T cells were undetectable in blood before anti-PD-L1 therapy but became readily detectible shortly after starting therapy. T cells produced robust IFNγ when stimulated by neoantigen (mutant) peptides but not by the normal (wild-type) peptides. Single cell RNAseq showed neoantigen-reactive T cells expressed the Th1-associated transcription factor (T-bet) and associated cytokines. These CD4 T cells did not significantly exhibit cytotoxicity or non-Th1 markers. Within the pretreatment tumor, resident CD4 T cells were also Th1-skewed and expressed T-bet. CONCLUSIONS: We identified and characterized tumor-specific Th1-skewed CD4 T cells targeting multiple neoantigens in a patient who experienced a profound and durable partial response to anti-PD-L1 therapy. To our knowledge, this is the first report of neoantigen-specific T cell responses in MCC. Although CD4 and CD8 T cells recognizing viral tumor antigens are often detectible in virus-positive MCC, only CD4 T cells recognizing neoantigens were detected in this patient. These findings suggest that CD4 T cells can play an important role in the response to anti-PD-(L)1 therapy.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Feminino , Humanos , Antígenos Virais de Tumores , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Linfócitos T CD4-Positivos , Interferon gama , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Fatores de Transcrição
7.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35862190

RESUMO

BackgroundHerpes simplex virus lymphadenitis (HSVL) is an unusual presentation of HSV reactivation in patients with chronic lymphocytic leukemia (CLL) and is characterized by systemic symptoms and no herpetic lesions. The immune responses during HSVL have not, to our knowledge, been studied.MethodsPeripheral blood and lymph node (LN) samples were obtained from a patient with HSVL. HSV-2 viral load, antibody levels, B and T cell responses, cytokine levels, and tumor burden were measured.ResultsThe patient showed HSV-2 viremia for at least 6 weeks. During this period, she had a robust HSV-specific antibody response with neutralizing and antibody-dependent cellular phagocytotic activity. Activated (HLA-DR+, CD38+) CD4+ and CD8+ T cells increased 18-fold, and HSV-specific CD8+ T cells in the blood were detected at higher numbers. HSV-specific B and T cell responses were also detected in the LN. Markedly elevated levels of proinflammatory cytokines in the blood were also observed. Surprisingly, a sustained decrease in CLL tumor burden without CLL-directed therapy was observed with this and also a prior episode of HSVL.ConclusionHSVL should be considered part of the differential diagnosis in patients with CLL who present with signs and symptoms of aggressive lymphoma transformation. An interesting finding was the sustained tumor control after 2 episodes of HSVL in this patient. A possible explanation for the reduction in tumor burden may be that the HSV-specific response served as an adjuvant for the activation of tumor-specific or bystander T cells. Studies in additional patients with CLL are needed to confirm and extend these findings.FundingNIH grants 4T32CA160040, UL1TR002378, and 5U19AI057266 and NIH contracts 75N93019C00063 and HHSN261200800001E. Neil W. and William S. Elkin Fellowship (Winship Cancer Institute).


Assuntos
Herpes Simples , Leucemia Linfocítica Crônica de Células B , Linfadenite , Linfócitos T CD8-Positivos , Feminino , Herpes Simples/patologia , Herpesvirus Humano 2 , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Linfadenite/diagnóstico , Linfadenite/patologia
8.
Viruses ; 14(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632760

RESUMO

HLA-B*57:01 is an HLA allelic variant associated with positive outcomes during viral infections through interactions with T cells and NK cells, but severe disease in persons treated with the anti-HIV-1 drug abacavir. The role of HLA-B*57:01 in the context of HSV infection is unknown. We identified an HLA-B*57:01-restricted CD8 T-cell epitope in the ICP22 (US1) protein of HSV-2. CD8 T cells reactive to the HSV-2 ICP22 epitope recognized the orthologous HSV-1 peptide, but not closely related peptides in human IFNL2 or IFNL3. Abacavir did not alter the CD8 T-cell recognition of the HSV or self-derived peptides. Unexpectedly, a tetramer of HSV-2 ICP22 epitope (228-236) and HLA-B*57:01 bound both CD8 T cells and NK cells. Tetramer specificity for KIR3DL1 was confirmed using KIR3DL1 overexpression on non-human primate cells lacking human KIR and studies with blocking anti-KIR3DL1 antibody. Interaction with KIR3DL1 was generalizable to donors lacking the HLA-B*57:01 genotype or HSV seropositivity. These findings suggest a mechanism for the recognition of HSV infection by NK cells or KIR-expressing T cells via KIR3DL1.


Assuntos
Epitopos de Linfócito T , Herpesvirus Humano 2 , Linfócitos T CD8-Positivos , Antígenos HLA-B , Peptídeos
9.
Front Immunol ; 13: 867962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432373

RESUMO

Antigen-specific TRM persist and protect against skin or female reproductive tract (FRT) HSV infection. As the pathogenesis of HSV differs between humans and model organisms, we focus on humans with well-characterized recurrent genital HSV-2 infection. Human CD8+ TRM persisting at sites of healed human HSV-2 lesions have an activated phenotype but it is unclear if TRM can be cultivated in vitro. We recovered HSV-specific TRM from genital skin and ectocervix biopsies, obtained after recovery from recurrent genital HSV-2, using ex vivo activation by viral antigen. Up to several percent of local T cells were HSV-reactive ex vivo. CD4 and CD8 T cell lines were up to 50% HSV-2-specific after sorting-based enrichment. CD8 TRM displayed HLA-restricted reactivity to specific HSV-2 peptides with high functional avidities. Reactivity to defined peptides persisted locally over several month and was quite subject-specific. CD4 TRM derived from biopsies, and from an extended set of cervical cytobrush specimens, also recognized diverse HSV-2 antigens and peptides. Overall we found that HSV-2-specific TRM are abundant in the FRT between episodes of recurrent genital herpes and maintain competency for expansion. Mucosal sites are accessible for clinical monitoring during immune interventions such as therapeutic vaccination.


Assuntos
Herpes Genital , Herpes Simples , Antígenos Virais , Feminino , Herpesvirus Humano 2 , Humanos , Memória Imunológica , Masculino , Células T de Memória , Peptídeos
10.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439166

RESUMO

BACKGROUNDMeasuring the immune response to SARS-CoV-2 enables assessment of past infection and protective immunity. SARS-CoV-2 infection induces humoral and T cell responses, but these responses vary with disease severity and individual characteristics.METHODSA T cell receptor (TCR) immunosequencing assay was conducted using small-volume blood samples from 302 individuals recovered from COVID-19. Correlations between the magnitude of the T cell response and neutralizing antibody (nAb) titers or indicators of disease severity were evaluated. Sensitivity of T cell testing was assessed and compared with serologic testing.RESULTSSARS-CoV-2-specific T cell responses were significantly correlated with nAb titers and clinical indicators of disease severity, including hospitalization, fever, and difficulty breathing. Despite modest declines in depth and breadth of T cell responses during convalescence, high sensitivity was observed until at least 6 months after infection, with overall sensitivity ~5% greater than serology tests for identifying prior SARS-CoV-2 infection. Improved performance of T cell testing was most apparent in recovered, nonhospitalized individuals sampled > 150 days after initial illness, suggesting greater sensitivity than serology at later time points and in individuals with less severe disease. T cell testing identified SARS-CoV-2 infection in 68% (55 of 81) of samples with undetectable nAb titers (<1:40) and in 37% (13 of 35) of samples classified as negative by 3 antibody assays.CONCLUSIONThese results support TCR-based testing as a scalable, reliable measure of past SARS-CoV-2 infection with clinical value beyond serology.TRIAL REGISTRATIONSpecimens were accrued under trial NCT04338360 accessible at clinicaltrials.gov.FUNDINGThis work was funded by Adaptive Biotechnologies, Frederick National Laboratory for Cancer Research, NIAID, Fred Hutchinson Joel Meyers Endowment, Fast Grants, and American Society for Transplantation and Cell Therapy.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Receptores de Antígenos de Linfócitos T/genética , SARS-CoV-2 , Índice de Gravidade de Doença , Estados Unidos
11.
Commun Biol ; 5(1): 133, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173258

RESUMO

Pre-existing pathogen-specific memory T cell responses can contribute to multiple adverse outcomes including autoimmunity and drug hypersensitivity. How the specificity of the T cell receptor (TCR) is subverted or seconded in many of these diseases remains unclear. Here, we apply abacavir hypersensitivity (AHS) as a model to address this question because the disease is linked to memory T cell responses and the HLA risk allele, HLA-B*57:01, and the initiating insult, abacavir, are known. To investigate the role of pathogen-specific TCR specificity in mediating AHS we performed a genome-wide screen for HLA-B*57:01 restricted T cell responses to Epstein-Barr virus (EBV), one of the most prevalent human pathogens. T cell epitope mapping revealed HLA-B*57:01 restricted responses to 17 EBV open reading frames and identified an epitope encoded by EBNA3C. Using these data, we cloned the dominant TCR for EBNA3C and a previously defined epitope within EBNA3B. TCR specificity to each epitope was confirmed, however, cloned TCRs did not cross-react with abacavir plus self-peptide. Nevertheless, abacavir inhibited TCR interactions with their cognate ligands, demonstrating that TCR specificity may be subverted by a drug molecule. These results provide an experimental road map for future studies addressing the heterologous immune responses of TCRs including T cell mediated adverse drug reactions.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Didesoxinucleosídeos , Epitopos de Linfócito T , Antígenos HLA-B , Herpesvirus Humano 4/genética , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Complemento 3d
12.
Blood Adv ; 6(6): 1732-1740, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35157769

RESUMO

Vaccinations effectively prevent infections; however, patients with chronic lymphocytic leukemia (CLL) have reduced antibody responses following vaccinations. Combined humoral and cellular immune responses to novel adjuvanted vaccines are not well characterized in CLL. In an open-label, single-arm clinical trial, we measured the humoral and cellular immunogenicity of the recombinant zoster vaccine (RZV) in CLL patients who were treatment naïve (TN) or receiving Bruton tyrosine kinase inhibitor (BTKi) therapy. The primary endpoint was antibody response to RZV (≥fourfold increase in anti-glycoprotein E [anti-gE]). Cellular response of gE-specific CD4+ T cells was assessed by flow cytometry for upregulation of ≥2 effector molecules. The antibody response rate was significantly higher in the TN cohort (76.8%; 95% confidence interval [CI], 65.7-87.8) compared with patients receiving a BTKi (40.0%; 95% CI, 26.4-53.6; P = .0002). The cellular response rate was also significantly higher in the TN cohort (70.0%; 95% CI, 57.3-82.7) compared with the BTKi group (41.3%; 95% CI, 27.1-55.5; P = .0072). A concordant positive humoral and cellular immune response was observed in 69.1% (95% CI, 56.9-81.3) of subjects with a humoral response, whereas 39.0% (95% CI, 24.1-54.0) of subjects without a humoral response attained a cellular immune response (P = .0033). Antibody titers and T-cell responses were not correlated with age, absolute B- and T-cell counts, or serum immunoglobulin levels (all P > .05). RZV induced both humoral and cellular immune responses in treated and untreated CLL patients, albeit with lower response rates in patients on BTKi therapy compared with TN patients. This trial was registered at www.clinicaltrials.gov as #NCT03702231.


Assuntos
Vacina contra Herpes Zoster , Herpes Zoster , Leucemia Linfocítica Crônica de Células B , Herpes Zoster/induzido quimicamente , Herpes Zoster/tratamento farmacológico , Herpes Zoster/prevenção & controle , Vacina contra Herpes Zoster/uso terapêutico , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Vacinas Sintéticas
13.
Nat Commun ; 13(1): 78, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013257

RESUMO

T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.


Assuntos
Antígenos CD1/imunologia , Glicolipídeos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Antígenos CD1/genética , Complexo CD3/genética , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Citotoxicidade Imunológica , Expressão Gênica , Glicolipídeos/metabolismo , Humanos , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mycobacterium tuberculosis/crescimento & desenvolvimento , Cultura Primária de Células , Ligação Proteica , Multimerização Proteica , Transdução Genética , Tuberculose/genética , Tuberculose/microbiologia
14.
Front Immunol ; 12: 735643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552595

RESUMO

Tissue-resident-memory T cells (TRM) populate the body's barrier surfaces, functioning as frontline responders against reencountered pathogens. Understanding of the mechanisms by which CD8TRM achieve effective immune protection remains incomplete in a naturally recurring human disease. Using laser capture microdissection and transcriptional profiling, we investigate the impact of CD8TRM on the tissue microenvironment in skin biopsies sequentially obtained from a clinical cohort of diverse disease expression during herpes simplex virus 2 (HSV-2) reactivation. Epithelial cells neighboring CD8TRM display elevated and widespread innate and cell-intrinsic antiviral signature expression, largely related to IFNG expression. Detailed evaluation via T-cell receptor reconstruction confirms that CD8TRM recognize viral-infected cells at the specific HSV-2 peptide/HLA level. The hierarchical pattern of core IFN-γ signature expression is well-conserved in normal human skin across various anatomic sites, while elevation of IFI16, TRIM 22, IFITM2, IFITM3, MX1, MX2, STAT1, IRF7, ISG15, IFI44, CXCL10 and CCL5 expression is associated with HSV-2-affected asymptomatic tissue. In primary human cells, IFN-γ pretreatment reduces gene transcription at the immediate-early stage of virus lifecycle, enhances IFI16 restriction of wild-type HSV-2 replication and renders favorable kinetics for host protection. Thus, the adaptive immune response through antigen-specific recognition instructs innate and cell-intrinsic antiviral machinery to control herpes reactivation, a reversal of the canonical thinking of innate activating adaptive immunity in primary infection. Communication from CD8TRM to surrounding epithelial cells to activate broad innate resistance might be critical in restraining various viral diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/imunologia , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Imunidade Inata , Memória Imunológica , Células T de Memória/imunologia , Pele/imunologia , Imunidade Adaptativa/genética , Adulto , Idoso , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica , Herpes Genital/genética , Herpes Genital/metabolismo , Herpes Genital/virologia , Herpesvirus Humano 2/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Interferon gama/genética , Interferon gama/metabolismo , Masculino , Células T de Memória/metabolismo , Células T de Memória/virologia , Pessoa de Meia-Idade , Fenótipo , Pele/metabolismo , Pele/virologia , Transcriptoma
15.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320842

RESUMO

BACKGROUNDSARS-CoV-2-specific antibodies may protect from reinfection and disease, providing rationale for administration of plasma containing SARS-CoV-2-neutralizing antibodies (nAbs) as a treatment for COVID-19. Clinical factors and laboratory assays to streamline plasma donor selection, and the durability of nAb responses, are incompletely understood.METHODSPotential convalescent plasma donors with virologically documented SARS-CoV-2 infection were tested for serum IgG against SARS-CoV-2 spike protein S1 domain and against nucleoprotein (NP), and for nAb.RESULTSAmong 250 consecutive persons, including 27 (11%) requiring hospitalization, who were studied a median of 67 days since symptom onset, 97% were seropositive on 1 or more assays. Sixty percent of donors had nAb titers ≥1:80. Correlates of higher nAb titers included older age (adjusted OR [AOR] 1.03 per year of age, 95% CI 1.00-1.06), male sex (AOR 2.08, 95% CI 1.13-3.82), fever during illness (AOR 2.73, 95% CI 1.25-5.97), and disease severity represented by hospitalization (AOR 6.59, 95% CI 1.32-32.96). Receiver operating characteristic analyses of anti-S1 and anti-NP antibody results yielded cutoffs that corresponded well with nAb titers, with the anti-S1 assay being slightly more predictive. nAb titers declined in 37 of 41 paired specimens collected a median of 98 days (range 77-120) apart (P < 0.001). Seven individuals (2.8%) were persistently seronegative and lacked T cell responses.CONCLUSIONnAb titers correlated with COVID-19 severity, age, and sex. SARS-CoV-2 IgG results can serve as useful surrogates for nAb testing. Functional nAb levels declined, and a small proportion of convalescent individuals lacked adaptive immune responses.FUNDINGThe project was supported by the Frederick National Laboratory for Cancer Research with support from the NIAID under contract number 75N91019D00024, and was supported by the Fred Hutchinson Joel Meyers Endowment, Fast-Grants, a New Investigator award from the American Society for Transplantation and Cellular Therapy, and NIH contracts 75N93019C0063, 75N91019D00024, and HHSN272201800013C, and NIH grants T32-AI118690, T32-AI007044, K08-AI119142, and K23-AI140918.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Doadores de Sangue , COVID-19/terapia , Imunoglobulina G , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/imunologia , Feminino , Humanos , Imunização Passiva , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Soroterapia para COVID-19
16.
J Infect Dis ; 223(4): 709-713, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32663845

RESUMO

We sought to determine whether donor-derived human herpesvirus (HHV) 6B-specific CD4+ T-cell abundance is correlated with HHV-6B detection after allogeneic hematopoietic cell transplantation. We identified 33 patients who received HLA-matched, non-T-cell-depleted, myeloablative allogeneic hematopoietic cell transplantation and underwent weekly plasma polymerase chain reaction testing for HHV-6B for 100 days thereafter. We tested donor peripheral blood mononuclear cells for HHV-6B-specific CD4+ T cells. Patients with HHV-6B detection above the median peak viral load (200 copies/mL) received approximately 10-fold fewer donor-derived total or HHV-6B-specific CD4+ T cells than those with peak HHV-6B detection at ≤200 copies/mL or with no HHV-6B detection. These data suggest the importance of donor-derived immunity for controlling HHV-6B reactivation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 6/isolamento & purificação , Adulto , Feminino , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/imunologia , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos , Carga Viral
17.
Rheumatology (Oxford) ; 59(11): 3479-3487, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32375180

RESUMO

OBJECTIVE: The mycobacterium tuberculosis (TB) IFN-γ release assay (TB-IGRA) assesses peripheral blood cell release of IFN-γ upon ex vivo exposure to mitogen (IGRA-MT), TB antigen or a negative/nil control (IGRA-NL); IGRA-NL is a measure of spontaneous IFN-γ release (SIR). Here, we investigate the diagnostic associations of elevated SIR and the potential use of IGRA-NL as a novel biomarker in SLE. METHODS: We analysed diagnostic code frequencies among 11 823 individuals undergoing TB-IGRA testing between 2010 and 2015 in a large urban US health-care system. To study the relationship between IGRA-NL and SLE, we identified 99 individuals with SLE and TB-IGRA test results then assessed correlations between IGRA-NL, normalized IGRA-NL (the quotient of IGRA-NL/IGRA-MT), disease manifestations and disease activity. RESULTS: We identified a discovery cohort of 108 individuals with elevated SIR (>5 S.d. above median) that was significantly enriched for a limited set of diagnoses, including SLE, TB infection, haemophagocytic lymphohistiocytosis and HIV infection. In SLE patients undergoing TB-IGRA testing, normalized IGRA-NL correlated better with disease activity than did anti-dsDNA or complement levels. This relationship appeared to reflect interactions between normalized IGRA-NL and the presence of acute skin disease, hypocomplementemia, fever and thrombocytopenia. CONCLUSION: Elevated SIR appears to be associated with a limited number of disease processes, including SLE. The diagnostic utility of SIR remains to be determined. IFN-γ activation, as measured by the TB-IGRA test, may offer a readily available tool for assessing disease activity in patients with SLE.


Assuntos
Autoanticorpos/imunologia , Testes de Liberação de Interferon-gama , Interferon gama/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite/fisiopatologia , Proteínas do Sistema Complemento/imunologia , Feminino , Febre/fisiopatologia , Infecções por HIV/imunologia , Humanos , Leucopenia/fisiopatologia , Lúpus Eritematoso Cutâneo/imunologia , Lúpus Eritematoso Cutâneo/fisiopatologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Linfo-Histiocitose Hemofagocítica/imunologia , Masculino , Pessoa de Meia-Idade , Serosite/fisiopatologia , Trombocitopenia/fisiopatologia , Tuberculose/imunologia , Adulto Jovem
18.
Cancer Immunol Res ; 8(5): 648-659, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179557

RESUMO

Merkel cell carcinoma (MCC) is often caused by persistent expression of Merkel cell polyomavirus (MCPyV) T-antigen (T-Ag). These non-self proteins comprise about 400 amino acids (AA). Clinical responses to immune checkpoint inhibitors, seen in about half of patients, may relate to T-Ag-specific T cells. Strategies to increase CD8+ T-cell number, breadth, or function could augment checkpoint inhibition, but vaccines to augment immunity must avoid delivery of oncogenic T-antigen domains. We probed MCC tumor-infiltrating lymphocytes (TIL) with an artificial antigen-presenting cell (aAPC) system and confirmed T-Ag recognition with synthetic peptides, HLA-peptide tetramers, and dendritic cells (DC). TILs from 9 of 12 (75%) subjects contained CD8+ T cells recognizing 1-8 MCPyV epitopes per person. Analysis of 16 MCPyV CD8+ TIL epitopes and prior TIL data indicated that 97% of patients with MCPyV+ MCC had HLA alleles with the genetic potential that restrict CD8+ T-cell responses to MCPyV T-Ag. The LT AA 70-110 region was epitope rich, whereas the oncogenic domains of T-Ag were not commonly recognized. Specific recognition of T-Ag-expressing DCs was documented. Recovery of MCPyV oncoprotein-specific CD8+ TILs from most tumors indicated that antigen indifference was unlikely to be a major cause of checkpoint inhibition failure. The myriad of epitopes restricted by diverse HLA alleles indicates that vaccination can be a rational component of immunotherapy if tumor immune suppression can be overcome, and the oncogenic regions of T-Ag can be modified without impacting immunogenicity.


Assuntos
Antígenos Virais de Tumores/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Célula de Merkel/imunologia , Epitopos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Poliomavírus das Células de Merkel/imunologia , Neoplasias Cutâneas/imunologia , Adulto , Idoso , Antígenos Virais de Tumores/metabolismo , Carcinogênese/imunologia , Carcinoma de Célula de Merkel/terapia , Feminino , Humanos , Imunoterapia/métodos , Masculino , Pessoa de Meia-Idade , Neoplasias Cutâneas/terapia , Adulto Jovem
19.
Mol Carcinog ; 59(7): 807-821, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219902

RESUMO

Great strides have been made in cancer immunotherapy including the breakthrough successes of anti-PD-(L)1 checkpoint inhibitors. In Merkel cell carcinoma (MCC), a rare and aggressive skin cancer, PD-(L)1 blockade is highly effective. Yet, ~50% of patients either do not respond to therapy or develop PD-(L)1 refractory disease and, thus, do not experience long-term benefit. For these patients, additional or combination therapies are needed to augment immune responses that target and eliminate cancer cells. Therapeutic vaccines targeting tumor-associated antigens, mutated self-antigens, or immunogenic viral oncoproteins are currently being developed to augment T-cell responses. Approximately 80% of MCC cases in the United States are driven by the ongoing expression of viral T-antigen (T-Ag) oncoproteins from genomically integrated Merkel cell polyomavirus (MCPyV). Since T-Ag elicits specific B- and T-cell immune responses in most persons with virus-positive MCC (VP-MCC), and ongoing T-Ag expression is required to drive VP-MCC cell proliferation, therapeutic vaccination with T-Ag is a rational potential component of immunotherapy. Failure of the endogenous T-cell response to clear VP-MCC (allowing clinically evident tumors to arise) implies that therapeutic vaccination will need to be potent ansd synergize with other mechanisms to enhance T-cell activity against tumor cells. Here, we review the relevant underlying biology of VP-MCC, potentially applicable therapeutic vaccine platforms, and antigen delivery formats. We also describe early successes in the field of therapeutic cancer vaccines and address several clinical scenarios in which VP-MCC patients could potentially benefit from a therapeutic vaccine.


Assuntos
Carcinoma de Célula de Merkel/imunologia , Poliomavírus das Células de Merkel/imunologia , Neoplasias Cutâneas/imunologia , Vacinas/imunologia , Animais , Antígenos Virais de Tumores/imunologia , Carcinoma de Célula de Merkel/terapia , Carcinoma de Célula de Merkel/virologia , Humanos , Imunoterapia/métodos , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/virologia , Linfócitos T/imunologia
20.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32051273

RESUMO

Pharmacological HIV-1 reactivation to reverse latent infection has been extensively studied. However, HIV-1 reactivation also occurs naturally, as evidenced by occasional low-level viremia ("viral blips") during antiretroviral treatment (ART). Clarifying where blips originate from and how they happen could provide clues to stimulate latency reversal more effectively and safely or to prevent viral rebound following ART cessation. We studied HIV-1 reactivation in the female genital tract, a dynamic anatomical target for HIV-1 infection throughout all disease stages. We found that primary endocervical epithelial cells from several women reactivated HIV-1 from latently infected T cells. The endocervical cells' HIV-1 reactivation capacity further increased upon Toll-like receptor 3 stimulation with poly(I·C) double-stranded RNA or infection with herpes simplex virus 2 (HSV-2). Notably, acyclovir did not eliminate HSV-2-induced HIV-1 reactivation. While endocervical epithelial cells secreted large amounts of several cytokines and chemokines, especially tumor necrosis factor alpha (TNF-α), CCL3, CCL4, and CCL20, their HIV-1 reactivation capacity was almost completely blocked by TNF-α neutralization alone. Thus, immunosurveillance activities by columnar epithelial cells in the endocervix can cause endogenous HIV-1 reactivation, which may contribute to viral blips during ART or rebound following ART interruption.IMPORTANCE A reason that there is no universal cure for HIV-1 is that the virus can hide in the genome of infected cells in the form of latent proviral DNA. This hidden provirus is protected from antiviral drugs until it eventually reactivates to produce new virions. It is not well understood where in the body or how this reactivation occurs. We studied HIV-1 reactivation in the female genital tract, which is often the portal of HIV-1 entry and which remains a site of infection throughout the disease. We found that the columnar epithelial cells lining the endocervix, the lower part of the uterus, are particularly effective in reactivating HIV-1 from infected T cells. This activity was enhanced by certain microbial stimuli, including herpes simplex virus 2, and blocked by antibodies against the inflammatory cytokine TNF-α. Avoiding HIV-1 reactivation could be important for maintaining a functional HIV-1 cure when antiviral therapy is stopped.


Assuntos
HIV-1/fisiologia , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Aciclovir/farmacologia , Antirretrovirais/uso terapêutico , Antivirais/farmacologia , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Colo do Útero/patologia , Células Epiteliais/patologia , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/virologia , Soropositividade para HIV/tratamento farmacológico , HIV-1/patogenicidade , Humanos , Cultura Primária de Células , Viremia/tratamento farmacológico , Latência Viral/efeitos dos fármacos , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA