Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heart Fail Rev ; 28(5): 1201-1209, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414917

RESUMO

Acute severe mitral regurgitation (MR) is rare, but often leads to cardiogenic shock, pulmonary edema, or both. Most common causes of acute severe MR are chordae tendineae (CT) rupture, papillary muscle (PM) rupture, and infective endocarditis (IE). Mild to moderate MR is often seen in patients with acute myocardial infarction (AMI). CT rupture in patients with floppy mitral valve/mitral valve prolapse is the most common etiology of acute severe MR today. In IE, native or prosthetic valve damage can occur (leaflet perforation, ring detachment, other), as well as CT or PM rupture. Since the introduction of percutaneous revascularization in AMI, the incidence of PM rupture has substantially declined. In acute severe MR, the hemodynamic effects of the large regurgitant volume into the left atrium (LA) during left ventricular (LV) systole, and in turn back into the LV during diastole, are profound as the LV and LA have not had time to adapt to this additional volume. A rapid, but comprehensive evaluation of the patient with acute severe MR is essential in order to define the underline cause and apply appropriate management. Echocardiography with Doppler provides vital information related to the underlying pathology. Coronary arteriography should be performed in patients with an AMI to define coronary anatomy and need for revascularization. In acute severe MR, medical therapy should be used to stabilize the patient before intervention (surgery, transcatheter); mechanical support is often required. Diagnostic and therapeutic steps should be individualized, and a multi-disciplinary team approach should be utilized.


Assuntos
Insuficiência Cardíaca , Doenças das Valvas Cardíacas , Insuficiência da Valva Mitral , Prolapso da Valva Mitral , Infarto do Miocárdio , Humanos , Insuficiência da Valva Mitral/complicações , Valva Mitral/patologia , Valva Mitral/cirurgia , Prolapso da Valva Mitral/complicações , Prolapso da Valva Mitral/diagnóstico , Prolapso da Valva Mitral/cirurgia , Doenças das Valvas Cardíacas/complicações , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/patologia , Infarto do Miocárdio/complicações
2.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231013

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models.


Assuntos
Displasia Arritmogênica Ventricular Direita , Animais , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Desmoplaquinas/genética , Modelos Animais de Doenças , Coração , Humanos , Camundongos , Fenótipo
4.
J Cardiovasc Dev Dis ; 7(2)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466575

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial "concealed phase" that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/ß-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.

5.
J Clin Invest ; 129(8): 3171-3184, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264976

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal ß-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and ß-catenin. A pharmacological activator of the WNT/ß-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and ß-catenin, and evidence for targeted activation of the WNT/ß-catenin pathway as a potential treatment for this disease.


Assuntos
Anquirinas , Displasia Arritmogênica Ventricular Direita , Miocárdio , Via de Sinalização Wnt , Animais , Anquirinas/genética , Anquirinas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Modelos Animais de Doenças , Feminino , Humanos , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , beta Catenina/genética , beta Catenina/metabolismo
6.
J Am Heart Assoc ; 8(4): e009960, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30741589

RESUMO

Background The aortic valve of the heart experiences constant mechanical stress under physiological conditions. Maladaptive valve injury responses contribute to the development of valvular heart disease. Here, we test the hypothesis that MG 53 (mitsugumin 53), an essential cell membrane repair protein, can protect valvular cells from injury and fibrocalcific remodeling processes associated with valvular heart disease. Methods and Results We found that MG 53 is expressed in pig and human patient aortic valves and observed aortic valve disease in aged Mg53-/- mice. Aortic valves of Mg53-/- mice showed compromised cell membrane integrity. In vitro studies demonstrated that recombinant human MG 53 protein protects primary valve interstitial cells from mechanical injury and that, in addition to mediating membrane repair, recombinant human MG 53 can enter valve interstitial cells and suppress transforming growth factor-ß-dependent activation of fibrocalcific signaling. Conclusions Together, our data characterize valve interstitial cell membrane repair as a novel mechanism of protection against valvular remodeling and assess potential in vivo roles of MG 53 in preventing valvular heart disease.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Calcinose/metabolismo , Proteínas com Motivo Tripartido/biossíntese , Remodelação Ventricular , Animais , Valva Aórtica/patologia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/fisiopatologia , Biomarcadores/metabolismo , Western Blotting , Calcinose/diagnóstico , Calcinose/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Transdução de Sinais , Estresse Mecânico , Suínos
7.
J Am Heart Assoc ; 3(6): e001064, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25349182

RESUMO

BACKGROUND: The progression of abdominal aortic aneurysm (AAA) involves a sustained influx of proinflammatory macrophages, which exacerbate tissue injury by releasing cytokines, chemokines, and matrix metalloproteinases. Previously, we showed that Notch deficiency reduces the development of AAA in the angiotensin II-induced mouse model by preventing infiltration of macrophages. Here, we examined whether Notch inhibition in this mouse model prevents progression of small AAA and whether these effects are associated with altered macrophage differentiation. METHODS AND RESULTS: Treatment with pharmacological Notch inhibitor (DAPT [N-(N-[3,5-difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butyl ester]) at day 3 or 8 of angiotensin II infusion arrested the progression of AAA in Apoe(-/-) mice, as demonstrated by a decreased luminal diameter and aortic width. The abdominal aortas of Apoe(-/-) mice treated with DAPT showed decreased expression of matrix metalloproteinases and presence of elastin precursors including tropoelastin and hyaluronic acid. Marginal adventitial thickening observed in the aorta of DAPT-treated Apoe(-/-) mice was not associated with increased macrophage content, as observed in the mice treated with angiotensin II alone. Instead, DAPT-treated abdominal aortas showed increased expression of Cd206-positive M2 macrophages and decreased expression of Il12-positive M1 macrophages. Notch1 deficiency promoted M2 differentiation of macrophages by upregulating transforming growth factor ß2 in bone marrow-derived macrophages at basal levels and in response to IL4. Protein expression of transforming growth factor ß2 and its downstream effector pSmad2 also increased in DAPT-treated Apoe(-/-) mice, indicating a potential link between Notch and transforming growth factor ß2 signaling in the M2 differentiation of macrophages. CONCLUSIONS: Pharmacological inhibitor of Notch signaling prevents the progression of AAA by macrophage differentiation-dependent mechanisms. The study also provides insights for novel therapeutic strategies to prevent the progression of small AAA.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/tratamento farmacológico , Dipeptídeos/farmacologia , Receptor Notch1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Idoso , Angiotensina II , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Elastina/metabolismo , Regulação da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Knockout , Pessoa de Meia-Idade , Receptor Notch1/deficiência , Receptor Notch1/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta2/metabolismo
8.
J Mol Cell Cardiol ; 60: 27-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23583836

RESUMO

The mature aortic valve is composed of a structured trilaminar extracellular matrix that is interspersed with aortic valve interstitial cells (AVICs) and covered by endothelium. Dysfunction of the valvular endothelium initiates calcification of neighboring AVICs leading to calcific aortic valve disease (CAVD). The molecular mechanism by which endothelial cells communicate with AVICs and cause disease is not well understood. Using a co-culture assay, we show that endothelial cells secrete a signal to inhibit calcification of AVICs. Gain or loss of nitric oxide (NO) prevents or accelerates calcification of AVICs, respectively, suggesting that the endothelial cell-derived signal is NO. Overexpression of Notch1, which is genetically linked to human CAVD, retards the calcification of AVICs that occurs with NO inhibition. In AVICs, NO regulates the expression of Hey1, a downstream target of Notch1, and alters nuclear localization of Notch1 intracellular domain. Finally, Notch1 and NOS3 (endothelial NO synthase) display an in vivo genetic interaction critical for proper valve morphogenesis and the development of aortic valve disease. Our data suggests that endothelial cell-derived NO is a regulator of Notch1 signaling in AVICs in the development of the aortic valve and adult aortic valve disease.


Assuntos
Valva Aórtica/metabolismo , Cardiopatias Congênitas/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Óxido Nítrico/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular/genética , Animais , Valva Aórtica/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Doença da Válvula Aórtica Bicúspide , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Óxido Nítrico/genética , Receptor Notch1/genética , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Suínos
9.
Arterioscler Thromb Vasc Biol ; 32(12): 3012-23, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23087364

RESUMO

OBJECTIVE: Activation of inflammatory pathways plays a critical role in the development of abdominal aortic aneurysms (AAA). Notch1 signaling is a significant regulator of the inflammatory response; however, its role in AAA is unknown. METHODS AND RESULTS: In an angiotensin II-induced mouse model of AAA, activation of Notch1 signaling was observed in the aortic aneurysmal tissue of Apoe(-/-) mice, and a similar activation of Notch1 was observed in aneurysms of humans undergoing AAA repair. Notch1 haploinsufficiency significantly reduced the incidence of AAA in Apoe(-/-) mice in response to angiotensin II. Reconstitution of bone marrow-derived cells from Notch1(+/-);Apoe(-/-) mice (donor) in lethally irradiated Apoe(-/-) mice (recipient) decreased the occurrence of aneurysm. Flow cytometry and immunohistochemistry demonstrated that Notch1 haploinsufficiency prevented the influx of inflammatory macrophages at the aneurysmal site by causing defects in macrophage migration and proliferation. In addition, there was an overall reduction in the inflammatory burden in the aorta of the Notch1(+/-);Apoe(-/-) mice compared with the Apoe(-/-) mice. Last, pharmacological inhibition of Notch1 signaling also prevented AAA formation and progression in Apoe(-/-) mice. CONCLUSIONS: Our data suggest that decreased levels of Notch1 protect against the formation of AAA by preventing macrophage recruitment and attenuating the inflammatory response in the aorta.


Assuntos
Aneurisma da Aorta Abdominal/prevenção & controle , Arterite/prevenção & controle , Macrófagos/fisiologia , Receptor Notch1/deficiência , Receptor Notch1/genética , Transdução de Sinais/fisiologia , Angiotensina II/efeitos adversos , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/fisiopatologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Arterite/fisiopatologia , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Haploinsuficiência/genética , Humanos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Receptor Notch1/fisiologia , Transdução de Sinais/efeitos dos fármacos
10.
Pediatr Blood Cancer ; 59(5): 941-4, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22294483

RESUMO

Fetal and neonatal hemolytic anemia can be caused by (γδß)(0)-thalassemia deletions of the ß-globin gene cluster. Many of these deletions have not been well characterized, and diagnostic tests are not readily available, thus hampering carrier detection, family counseling, and antenatal diagnosis. We report and define a 198 kb deletion removing the entire ß-globin gene cluster, which was found in members of a multigeneration family of Irish/Scottish descent. The proband had life-threatening fetal and neonatal hemolytic anemia which subsided by 1 year of age.


Assuntos
Anemia Hemolítica Congênita/genética , Doenças Fetais/genética , Deleção de Genes , Família Multigênica , Globinas beta/genética , Adulto , Anemia Hemolítica Congênita/terapia , Feminino , Doenças Fetais/terapia , Humanos , Lactente , Recém-Nascido , Gravidez
11.
PLoS One ; 6(11): e27743, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110751

RESUMO

Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD) are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs). We found significant downregulation of Sox9 along with several cartilage-specific genes that were direct targets of the transcription factor, Sox9. Loss of Sox9 expression has been published to be associated with aortic valve calcification. Utilizing an in vitro porcine aortic valve calcification model system, inhibition of Notch activity resulted in accelerated calcification while stimulation of Notch signaling attenuated the calcific process. Finally, the addition of Sox9 was able to prevent the calcification of porcine AVICs that occurs with Notch inhibition. In conclusion, loss of Notch signaling contributes to aortic valve calcification via a Sox9-dependent mechanism.


Assuntos
Valva Aórtica/metabolismo , Calcinose/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Receptor Notch1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Valva Aórtica/patologia , Células COS , Calcinose/patologia , Proteínas de Ciclo Celular/metabolismo , Chlorocebus aethiops , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Doenças das Valvas Cardíacas/patologia , Humanos , Pessoa de Meia-Idade , Transporte Proteico , Ratos , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Suínos , Transcrição Gênica
12.
J Bacteriol ; 193(16): 4199-213, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21705586

RESUMO

Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B(12), penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B(12) through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second ß-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.


Assuntos
Bacillus megaterium/classificação , Bacillus megaterium/genética , Genoma Bacteriano , Bacillus megaterium/metabolismo , Cromossomos Bacterianos , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Variação Genética , Dados de Sequência Molecular , Filogenia , Plasmídeos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA