RESUMO
BACKGROUND CONTEXT: Adjacent segment disease (ASD) is a well-known complication after lumbar fusion. Lumbar lateral interbody fusion (LLIF) may provide an alternative method of treatment for ASD while avoiding the morbidity associated with revision surgery through a traditional posterior approach. This is the first biomechanical study to evaluate the stability of lateral-based constructs for treating ASD in existing multilevel fusion model. PURPOSE: We aimed to evaluate the biomechanical stability of anterior column reconstruction through the less invasive lateral-based interbody techniques compared with traditional posterior spinal fusion for the treatment of ASD in existing multilevel fusion. STUDY DESIGN/SETTING: Cadaveric biomechanical study of laterally based interbody strategies for treating ASD. METHODS: Eighteen fresh-frozen cadaveric specimens were nondestructively loaded in flexion, extension, and lateral bending. The specimens were randomized into three different groups according to planned posterior spinal instrumented fusion (PSF): group 1: L5-S1, group 2: L4-S1, and group 3: L3-S1. In each group, ASD was considered the level cranial to the upper-instrumented vertebrae (UIV). After testing the intact spine, each specimen underwent PSF representing prior fusion in the ASD model. The adjacent segment for each specimen then underwent (1) Stand-alone LLIF, (2) LLIFâ¯+â¯plate, (3) LLIFâ¯+â¯single screw rod (SSR) anterior instrumentation, and (4) LLIFâ¯+â¯traditional posterior extension of PSF. In all conditions, three-dimensional kinematics were tracked, and range of motion (ROM) was calculated for the comparisons. RESULTS: ROM results were expressed as a percentage of the intact spine ROM. LLIF effectively reduces ROM in all planes of ROM. Supplementation of LLIF with plate or SSR provides further stability as compared with stand-alone LLIF. Expansion of posterior instrumentation provides the most substantial stability in all planes of ROM (p <.05). All constructs demonstrated a consistent trend of reduction in ROM between all the groups in all bending motions. CONCLUSIONS: This biomechanical study suggests potential promise in exploring LLIF as an alternative treatment of ASD but reinforces previous studies' findings that traditional expansion of posterior instrumentation provides the most biomechanically stable construct.
Assuntos
Região Lombossacral/cirurgia , Fusão Vertebral/métodos , Fenômenos Biomecânicos , Placas Ósseas , Parafusos Ósseos , Cadáver , Humanos , Amplitude de Movimento Articular , Fusão Vertebral/instrumentaçãoRESUMO
PURPOSE: Locked plating (LP) of distal femoral fractures has become very popular. Despite technique suggestions from anecdotal and some early reports, knowledge about risk factors for failure, nonunion (NU), and revision is limited. The purpose of this study was to analyze the complications and clinical outcomes of LP treatment for distal femoral fractures. MATERIALS AND METHODS: From two trauma centers, 243 consecutive surgically treated distal femoral fractures (AO/OTA 33) were retrospectively identified. Of these, 111 fractures in 106 patients (53.8% female) underwent locked plate fixation. They had an average age of 54 years (range 18 to 95 years): 34.2% were obese, 18.9% were smokers, and 18.9% were diabetic. Open fractures were present in 40.5% with 79.5% Gustilo type III. Fixation constructs for plate length, working length, and screw concentration were delineated. Nonunion and/or infection, and implant failure were used as outcome complication variables. Outcome was based on surgical method and addressed according to Pritchett for reduction, range of motion, and pain. RESULTS: Eighty-three (74.8%) of the fractures healed after the index procedure. Twenty (18.0%) of the patients developed a NU. Four of 20 (20%) resulted in a recalcitrant NU. Length of comminution did not correlate to NU (p = 0.180). Closed injuries had a higher tendency to heal after the index procedure than open injuries (p = 0.057). Closed and minimally open (Gustilo/Anderson types I and II) fractures healed at a significantly higher rate after the index procedure compared to type III open fractures (80.0% versus 61.3%, p = 0.041). Eleven fractures (9.9%) developed hardware failure. Fewer nonunions were found in the submuscular group (10.7%) compared to open reduction (32.0%) (p = 0.023). Fractures above total knee arthroplasties had a significantly greater rate of failed hardware (p = 0.040) and worse clinical outcome according to Pritchett (p = 0.040). Loss of fixation was related to pain (F = 3.19, p = 0.046) and a tendency to worse outcome (F = 2.43, p = 0.071). No relationship was found between nonunion and working length. CONCLUSION: Despite modern fixation techniques, distal femoral fractures often result in persistent disability and worse clinical outcomes. Soft tissue management seems to be important. Submuscular plate insertion reduced the nonunion rate. Preexisting total knee arthroplasty increased the risk of hardware failure. Further studies determining factors that improve outcome are warranted.