Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 35(6): 987-994, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30165436

RESUMO

MOTIVATION: Genome-scale gene networks contain regulatory genes called hubs that have many interaction partners. These genes usually play an essential role in gene regulation and cellular processes. Despite recent advancements in high-throughput technology, inferring gene networks with hub genes from high-dimensional data still remains a challenging problem. Novel statistical network inference methods are needed for efficient and accurate reconstruction of hub networks from high-dimensional data. RESULTS: To address this challenge we propose DW-Lasso, a degree weighted Lasso (least absolute shrinkage and selection operator) method which infers gene networks with hubs efficiently under the low sample size setting. Our network reconstruction approach is formulated as a two stage procedure: first, the degree of networks is estimated iteratively, and second, the gene regulatory network is reconstructed using degree information. A useful property of the proposed method is that it naturally favors the accumulation of neighbors around hub genes and thereby helps in accurate modeling of the high-throughput data under the assumption that the underlying network exhibits hub structure. In a simulation study, we demonstrate good predictive performance of the proposed method in comparison to traditional Lasso type methods in inferring hub and scale-free graphs. We show the effectiveness of our method in an application to microarray data of Escherichia coli and RNA sequencing data of Kidney Clear Cell Carcinoma from The Cancer Genome Atlas datasets. AVAILABILITY AND IMPLEMENTATION: Under the GNU General Public Licence at https://cran.r-project.org/package=DWLasso. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Genoma
2.
Nat Methods ; 13(4): 310-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26901648

RESUMO

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.


Assuntos
Causalidade , Redes Reguladoras de Genes , Neoplasias/genética , Mapeamento de Interação de Proteínas/métodos , Software , Biologia de Sistemas , Algoritmos , Biologia Computacional , Simulação por Computador , Perfilação da Expressão Gênica , Humanos , Modelos Biológicos , Transdução de Sinais , Células Tumorais Cultivadas
3.
Bioinformatics ; 29(22): 2892-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23966112

RESUMO

MOTIVATION: After more than a decade since microarrays were used to predict phenotype of biological samples, real-life applications for disease screening and identification of patients who would best benefit from treatment are still emerging. The interest of the scientific community in identifying best approaches to develop such prediction models was reaffirmed in a competition style international collaboration called IMPROVER Diagnostic Signature Challenge whose results we describe herein. RESULTS: Fifty-four teams used public data to develop prediction models in four disease areas including multiple sclerosis, lung cancer, psoriasis and chronic obstructive pulmonary disease, and made predictions on blinded new data that we generated. Teams were scored using three metrics that captured various aspects of the quality of predictions, and best performers were awarded. This article presents the challenge results and introduces to the community the approaches of the best overall three performers, as well as an R package that implements the approach of the best overall team. The analyses of model performance data submitted in the challenge as well as additional simulations that we have performed revealed that (i) the quality of predictions depends more on the disease endpoint than on the particular approaches used in the challenge; (ii) the most important modeling factor (e.g. data preprocessing, feature selection and classifier type) is problem dependent; and (iii) for optimal results datasets and methods have to be carefully matched. Biomedical factors such as the disease severity and confidence in diagnostic were found to be associated with the misclassification rates across the different teams. AVAILABILITY: The lung cancer dataset is available from Gene Expression Omnibus (accession, GSE43580). The maPredictDSC R package implementing the approach of the best overall team is available at www.bioconductor.org or http://bioinformaticsprb.med.wayne.edu/.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Diagnóstico Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fenótipo , Doença/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Psoríase/diagnóstico , Psoríase/genética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética
4.
J Math Biol ; 67(1): 143-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526835

RESUMO

Many complex diseases that are difficult to treat cannot be mapped onto a single cause, but arise from the interplay of multiple contributing factors. In the study of such diseases, it is becoming apparent that therapeutic strategies targeting a single protein or metabolite are often not efficacious. Rather, a systems perspective describing the interaction of physiological components is needed. In this paper, we demonstrate via examples of disease models the kind of inverse problems that arise from the need to infer disease mechanisms and/or therapeutic strategies. We identify the challenges that arise, in particular the need to devise strategies that are robust against variable physiological states and parametric uncertainties.


Assuntos
Doença/etiologia , Modelos Biológicos , Terapêutica/estatística & dados numéricos , Síndrome de Cushing/etiologia , Síndrome de Cushing/fisiopatologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Lipoproteínas/metabolismo , Sistema de Sinalização das MAP Quinases , Conceitos Matemáticos , Mutação , Sistema Hipófise-Suprarrenal/fisiopatologia , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA