RESUMO
Reproductive success hinges on precisely coordinated meiosis, yet our understanding of how structural rearrangements of chromatin and phase transitions during meiosis are transcriptionally regulated is limited. In crop plants, detailed analysis of the meiotic transcriptome could identify regulatory genes and epigenetic regulators that can be targeted to increase recombination rates and broaden genetic variation, as well as provide a resource for comparison among eukaryotes of different taxa to answer outstanding questions about meiosis. We conducted a meiotic stage-specific analysis of messenger RNA (mRNA), small non-coding RNA (sncRNA), and long intervening/intergenic non-coding RNA (lincRNA) in wheat (Triticum aestivum L.) and revealed novel mechanisms of meiotic transcriptional regulation and meiosis-specific transcripts. Amidst general repression of mRNA expression, significant enrichment of ncRNAs was identified during prophase I relative to vegetative cells. The core meiotic transcriptome was comprised of 9309 meiosis-specific transcripts, 48 134 previously unannotated meiotic transcripts, and many known and novel ncRNAs differentially expressed at specific stages. The abundant meiotic sncRNAs controlled the reprogramming of central metabolic pathways by targeting genes involved in photosynthesis, glycolysis, hormone biosynthesis, and cellular homeostasis, and lincRNAs enhanced the expression of nearby genes. Alternative splicing was not evident in this polyploid species, but isoforms were switched at phase transitions. The novel, stage-specific regulatory controls uncovered here challenge the conventional understanding of this crucial biological process and provide a new resource of requisite knowledge for those aiming to directly modulate meiosis to improve crop plants. The wheat meiosis transcriptome dataset can be queried for genes of interest using an eFP browser located at https://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi?dataSource=Wheat_Meiosis.
Assuntos
Transcriptoma , Triticum , Triticum/genética , Triticum/metabolismo , Meiose/genética , RNA Mensageiro/genética , RNA não Traduzido/genéticaRESUMO
Camelina neglecta is a diploid species from the genus Camelina, which includes the versatile oilseed Camelina sativa. These species are closely related to Arabidopsis thaliana and the economically important Brassica crop species, making this genus a useful platform to dissect traits of agronomic importance while providing a tool to study the evolution of polyploids. A highly contiguous chromosome-level genome sequence of C. neglecta with an N50 size of 29.1 Mb was generated utilizing Pacific Biosciences (PacBio, Menlo Park, CA) long-read sequencing followed by chromosome conformation phasing. Comparison of the genome with that of C. sativa shows remarkable coincidence with subgenome 1 of the hexaploid, with only one major chromosomal rearrangement separating the two. Synonymous substitution rate analysis of the predicted 34 061 genes suggested subgenome 1 of C. sativa directly descended from C. neglecta around 1.2 mya. Higher functional divergence of genes in the hexaploid as evidenced by the greater number of unique orthogroups, and differential composition of resistant gene analogs, might suggest an immediate adaptation strategy after genome merger. The absence of genome bias in gene fractionation among the subgenomes of C. sativa in comparison with C. neglecta, and the complete lack of fractionation of meiosis-specific genes attests to the neopolyploid status of C. sativa. The assembled genome will provide a tool to further study genome evolution processes in the Camelina genus and potentially allow for the identification and exploitation of novel variation for Camelina crop improvement.
Assuntos
Arabidopsis , Brassica , Brassicaceae , Neglecta , Diploide , Brassicaceae/genética , Arabidopsis/genética , Brassica/genética , Genoma de PlantaRESUMO
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.
Assuntos
Variação Genética , Genoma de Planta/genética , Genômica , Internacionalidade , Melhoramento Vegetal/métodos , Triticum/genética , Aclimatação/genética , Animais , Centrômero/genética , Centrômero/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/genética , Introgressão Genética , Haplótipos , Insetos/patogenicidade , Proteínas NLR/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/classificação , Triticum/crescimento & desenvolvimentoRESUMO
Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.
Assuntos
Brassica napus/genética , Duplicação Cromossômica , Evolução Molecular , Genoma de Planta , Poliploidia , Sementes/genética , Brassica napus/citologiaRESUMO
We have generated a Brassica napus (canola) population of 3,158 EMS-mutagenised lines and used TILLING to demonstrate that the population has a high enough mutation density that it will be useful for identification of mutations in genes of interest in this important crop species. TILLING is a reverse genetics technique that has been successfully used in many plant and animal species. Classical TILLING involves the generation of a mutagenised population, followed by screening of DNA samples using a mismatch-specific endonuclease that cleaves only those PCR products that carry a mutation. Polyacrylamide gel detection is then used to visualise the mutations in any gene of interest. We have used this TILLING technique to identify 432 unique mutations in 26 different genes in B. napus (canola cv. DH12075). This reflects a mutation density ranging from 1/56 kb to 1/308 kb (depending on the locus) with an average of 1/109 kb. We have also successfully verified the utility of next generation sequencing technology as a powerful approach for the identification of rare mutations in a population of plants, even in polyploid species such as B. napus. Most of the mutants we have identified are publically available.
Assuntos
Brassica napus/genética , Análise Mutacional de DNA/métodos , Variação Genética/genética , Mutagênese/genética , Sequência de Bases , Brassica napus/crescimento & desenvolvimento , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida/métodos , Dados de Sequência Molecular , Taxa de MutaçãoRESUMO
Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts.