Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Exp Mol Med ; 56(9): 1991-2001, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39218976

RESUMO

Stanniocalcin 1 (STC1) is a calcium- and phosphate-regulating hormone that is expressed in all tissues, including bone tissues, and is involved in calcium and phosphate homeostasis. Previously, STC1 expression was found to be increased by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] administration in renal proximal tubular cells. In this study, we investigated whether STC1 directly regulates osteoblast differentiation or reciprocally controls the effects of 1,25(OH)2D3 on osteoblasts to contribute to bone homeostasis. We found that STC1 inhibited osteoblast differentiation in vitro and bone morphogenetic protein 2 (BMP2)-induced ectopic bone formation in vivo. Moreover, 1,25(OH)2D3 increased STC1 expression through direct binding to the Stc1 promoter of the vitamin D receptor (VDR). STC1 activated the 1,25(OH)2D3-VDR signaling pathway through the upregulation of VDR expression mediated by the inhibition of Akt phosphorylation in osteoblasts. STC1 further increased the effects of 1,25(OH)2D3 on receptor activator of nuclear factor-κB ligand (RANKL) secretion and inhibited osteoblast differentiation by exhibiting a positive correlation with 1,25(OH)2D3. The long-bone phenotype of transgenic mice overexpressing STC1 specifically in osteoblasts was not significantly different from that of wild-type mice. However, compared with that in the wild-type mice, 1,25(OH)2D3 administration significantly decreased bone mass in the STC1 transgenic mice. Collectively, these results suggest that STC1 negatively regulates osteoblast differentiation and bone formation; however, the inhibitory effect of STC1 on osteoblasts is transient and can be reversed under normal conditions. Nevertheless, the synergistic effect of STC1 and 1,25(OH)2D3 through 1,25(OH)2D3 administration may reduce bone mass by inhibiting osteoblast differentiation.


Assuntos
Calcificação Fisiológica , Calcitriol , Diferenciação Celular , Glicoproteínas , Osteoblastos , Receptores de Calcitriol , Animais , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Calcitriol/farmacologia , Diferenciação Celular/efeitos dos fármacos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligante RANK/metabolismo , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Transdução de Sinais/efeitos dos fármacos , Vitamina D/análogos & derivados , Humanos
2.
Arthritis Rheumatol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262222

RESUMO

OBJECTIVE: Osteoarthritis (OA) is the most common degenerative disease worldwide, with no practical means of prevention and limited treatment options. Recently, our group unveiled a novel mechanism contributing to OA pathogenesis in association with abnormal cholesterol metabolism in chondrocytes. In this study, we aimed to establish a clinical link between lipid profiles and OA in humans, assess the effectiveness of cholesterol-lowering drugs in suppressing OA development in mice, and uncover the cholesterol-lowering mechanisms that effectively impede OA progression. METHODS: Five clinically approved cholesterol-lowering drugs (fenofibrate, atorvastatin, ezetimibe, niacin, and lomitapide) were injected into the knee joints or administered with diet to mice with OA who underwent destabilization of the medial meniscus induction and were fed a 2% high-cholesterol diet. Gene expression linked to cholesterol metabolism was determined using microarray analysis. Furthermore, the in vivo functions of these genes were explored through intra-articular injection of either its inhibitor or adenovirus. RESULTS: Logistic regression analysis confirmed a close relationship between the diagnostic criteria of hyperlipidemia based on serum lipid levels and OA incidence. Among the cholesterol-lowering drugs examined, fenofibrate exerted the most significant protective effect against cartilage destruction, which was attributed to elevated levels of high-density lipoprotein cholesterol that are crucial for cholesterol efflux. Notably, cholesterol efflux was suppressed during OA progression via down-regulation of apolipoprotein A1-binding protein (AIBP) expression. Overexpression of AIBP effectively inhibits OA progression. CONCLUSION: Our results suggest that restoration of cholesterol homeostasis to a normal state through administration of fenofibrate or AIBP overexpression, both of which induce cholesterol efflux, offers an effective therapeutic option for patients with OA.

3.
J Cell Physiol ; 239(6): e31268, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577903

RESUMO

Several members of the transforming growth factor beta (TGF-ß) superfamily regulate the proliferation, differentiation, and function of bone-forming osteoblasts and bone-resorbing osteoclasts. However, it is still unknown whether Nodal, a member of the TGF-ß superfamily, serves a function in bone cells. In this study, we found that Nodal did not have any function in osteoblasts but instead negatively regulated osteoclast differentiation. Nodal inhibited RANKL-induced osteoclast differentiation by downregulating the expression of pro-osteoclastogenic genes, including c-fos, Nfatc1, and Blimp1, and upregulating the expression of antiosteoclastogenic genes, including Bcl6 and Irf8. Nodal activated STAT1 in osteoclast precursor cells, and STAT1 downregulation significantly reduced the inhibitory effect of Nodal on osteoclast differentiation. These findings indicate that Nodal activates STAT1 to downregulate or upregulate the expression of pro-osteoclastogenic or antiosteoclastogenic genes, respectively, leading to the inhibition of osteoclast differentiation. Moreover, the inhibitory effect of Nodal on osteoclast differentiation contributed to the reduction of RANKL-induced bone loss in vivo.


Assuntos
Diferenciação Celular , Proteína Nodal , Osteoclastos , Fator de Transcrição STAT1 , Animais , Camundongos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Fosforilação , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Ligante RANK/metabolismo , Transdução de Sinais , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Masculino , Camundongos Endogâmicos ICR , Proteína Nodal/genética , Proteína Nodal/metabolismo , Proteína Nodal/farmacologia
4.
Int Endod J ; 57(6): 759-768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436525

RESUMO

AIM: Among numerous constituents of Panax ginseng, a constituent named Ginsenoside Rb1 (G-Rb1) has been studied to diminish inflammation associated with diseases. This study investigated the anti-inflammatory properties of G-Rb1 on human dental pulp cells (hDPCs) exposed to lipopolysaccharide (LPS) and aimed to determine the underlying molecular mechanisms. METHODOLOGY: The KEGG pathway analysis was performed after RNA sequencing in G-Rb1- and LPS-treated hDPCs. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used for the assessment of cell adhesion molecules and inflammatory cytokines. Statistical analysis was performed with one-way ANOVA and the Student-Newman-Keuls test. RESULTS: G-Rb1 did not exhibit any cytotoxicity within the range of concentrations tested. However, it affected the levels of TNF-α, IL-6 and IL-8, as these showed reduced levels with exposure to LPS. Additionally, less mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were shown. With the presence of G-Rb1, decreased levels of PI3K/Akt, phosphorylated IκBα and p65 were also observed. Furthermore, phosphorylated ERK and JNK by LPS were diminished within 15, 30 and 60 min of G-Rb1 exposure; however, the expression of non-phosphorylated ERK and JNK remained unchanged. CONCLUSIONS: G-Rb1 suppressed the LPS-induced increase of cell adhesion molecules and inflammatory cytokines, while also inhibiting PI3K/Akt, phosphorylation of NF-κB transcription factors, ERK and JNK of MAPK signalling in hDPCs.


Assuntos
Polpa Dentária , Ginsenosídeos , Lipopolissacarídeos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Ginsenosídeos/farmacologia , Humanos , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , NF-kappa B/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Células Cultivadas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Citocinas/metabolismo , Western Blotting
5.
J Cell Physiol ; 239(2): e31171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38214098

RESUMO

Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.


Assuntos
Diferenciação Celular , Glicoproteínas de Membrana , Proteínas Quimioatraentes de Monócitos , Osteoclastos , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos ICR , Proteínas Quimioatraentes de Monócitos/genética , Proteínas Quimioatraentes de Monócitos/metabolismo , Proteínas Quimioatraentes de Monócitos/farmacologia , NF-kappa B/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Regulação para Cima
6.
Free Radic Biol Med ; 211: 77-88, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101586

RESUMO

Sestrins are stress-responsive proteins with antioxidant properties. They participate in cellular redox balance and protect against oxidative damage. This study investigated the effects of Sestrin2 (Sesn2) on osteoclast differentiation and function. Overexpressing Sesn2 in osteoclast precursor cells significantly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis. This was assessed as reduced expression of various osteoclast markers, including c-Fos, nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor, tartrate-resistant acid phosphatase, and cathepsin K. Conversely, downregulation of Sesn2 produced the opposite effect. Mechanistically, Sesn2 overexpression enhanced AMPK activation and the nuclear translocation of nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2), promoting antioxidant enzymes. Moreover, azithromycin (Azm) induced Sesn2 expression, which suppressed RANKL-induced osteoclast differentiation. Specifically, Azm treatment reduced RANKL-induced production of reactive oxygen species in osteoclasts. Furthermore, intraperitoneal administration of Azm ameliorated RANKL-induced bone loss by reducing osteoclast activity in mice. Taken together, our results suggested that Azm-induced Sesn2 act as a negative regulator of RANKL-induced osteoclast differentiation through the AMPK/NFATc1 signaling pathway. Concisely, targeting Sesn2 can be a potential pharmacological intervention in osteoporosis.


Assuntos
Osteogênese , Ligante RANK , Animais , Camundongos , Osteogênese/genética , Espécies Reativas de Oxigênio/metabolismo , Ligante RANK/genética , Ligante RANK/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Diferenciação Celular
7.
J Endod ; 49(12): 1660-1667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774945

RESUMO

INTRODUCTION: Osteolectin is a secreted glycoprotein of the C-type lectin domain superfamily, expressed in bone tissues and is reported as a novel osteogenic factor that promotes bone regeneration. However, the effect of osteolectin on human dental pulp cells (hDPCs) has not been reported. Therefore, we aimed to investigate the odontoblastic differentiation of osteolectin in hDPCs and further attempt to reveal its underlying mechanism. METHODS: Cytotoxicity assays were used to detect the cytotoxicity of osteolectin. The odontoblastic differentiation of hDPCs and its underlying mechanisms were measured by the alkaline phosphatase (ALP) activity, mineralized spots formation, and the gene and protein expression of odontoblastic differentiation through ALP staining, Alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot analysis, respectively. RESULTS: WST-1 assay showed osteolectin at concentrations below 300 ng/ml was noncytotoxic and safe for hDPCs. The following experiment demonstrated that osteolectin could increase ALP activity, accelerate the mineralization process, and up-regulate the odontogenic differentiation markers in both gene and protein levels (P < .05). Osteolectin stimulated the phosphorylation of ERK, JNK, and Protein kinase B (AKT) in hDPCs. Extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and AKT inhibitors decreased ALP activity and mineralization capacity and suppressed the expression of dentin sialophosphoprotein and dentin matrix protein-1. CONCLUSION: Osteolectin can promote odontoblastic differentiation of hDPCs, and the whole process may stimulate ERK, JNK, and AKT signaling pathways by increasing p-ERK, p-JNK, and p-AKT signals.


Assuntos
Proteínas da Matriz Extracelular , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Polpa Dentária , Diferenciação Celular , Transdução de Sinais , Odontoblastos , Fosfatase Alcalina/metabolismo , Células Cultivadas , Proliferação de Células , Fosfoproteínas
8.
BMB Rep ; 56(10): 545-550, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574806

RESUMO

Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomyinduced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 545-550].


Assuntos
NF-kappa B , Osteoporose , Humanos , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Diferenciação Celular , Osteoporose/metabolismo
9.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240020

RESUMO

There has been increasing interest in adjunctive use of anti-inflammatory drugs to control periodontitis. This study was performed to examine the effects of pirfenidone (PFD) on alveolar bone loss in ligature-induced periodontitis in mice and identify the relevant mechanisms. Experimental periodontitis was established by ligating the unilateral maxillary second molar for 7 days in mice (n = 8 per group), and PFD was administered daily via intraperitoneal injection. The micro-computed tomography and histology analyses were performed to determine changes in the alveolar bone following the PFD administration. For in vitro analysis, bone marrow macrophages (BMMs) were isolated from mice and cultured with PFD in the presence of RANKL or LPS. The effectiveness of PFD on osteoclastogenesis, inflammatory cytokine expression, and NF-κB activation was determined with RT-PCR, Western blot, and immunofluorescence analyses. PFD treatment significantly inhibited the ligature-induced alveolar bone loss, with decreases in TRAP-positive osteoclasts and expression of inflammatory cytokines in mice. In cultured BMM cells, PFD also inhibited RANKL-induced osteoclast differentiation and LPS-induced proinflammatory cytokine (IL-1ß, IL-6, TNF-a) expression via suppressing the NF-κB signal pathway. These results suggest that PFD can suppress periodontitis progression by inhibiting osteoclastogenesis and inflammatory cytokine production via inhibiting the NF-κB signal pathway, and it may be a promising candidate for controlling periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Animais , NF-kappa B/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/metabolismo , Microtomografia por Raio-X , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Osteoclastos/metabolismo , Periodontite/tratamento farmacológico , Periodontite/etiologia , Periodontite/metabolismo , Citocinas/metabolismo , Ligante RANK/metabolismo
10.
J Cell Physiol ; 238(5): 1006-1019, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870066

RESUMO

The engulfment adaptor phosphotyrosine-binding domain containing 1 (GULP1) is an adaptor protein involved in the engulfment of apoptotic cells via phagocytosis. Gulp1 was first found to promote the phagocytosis of apoptotic cells by macrophages, and its role in various tissues, including neurons and ovaries, has been well studied. However, the expression and function of GULP1 in bone tissue are poorly understood. Consequently, to determine whether GULP1 plays a role in the regulation of bone remodeling in vitro and in vivo, we generated Gulp1 knockout (KO) mice. Gulp1 was expressed in bone tissue, mainly in osteoblasts, while its expression is very low in osteoclasts. Microcomputed tomography and histomorphometry analysis in 8-week-old male Gulp1 KO mice revealed a high bone mass in comparison with male wild-type (WT) mice. This was a result of decreased osteoclast differentiation and function in vivo and in vitro as confirmed by a reduced actin ring and microtubule formation in osteoclasts. Gas chromatography-mass spectrometry analysis further showed that both 17ß-estradiol (E2) and 2-hydroxyestradiol levels, and the E2/testosterone metabolic ratio, reflecting aromatase activity, were also higher in the bone marrow of male Gulp1 KO mice than in male WT mice. Consistent with mass spectrometry analysis, aromatase enzymatic activity was significantly higher in the bone marrow of male Gulp1 KO mice. Altogether, our results suggest that GULP1 deficiency decreases the differentiation and function of osteoclasts themselves and increases sex steroid hormone-mediated inhibition of osteoclast differentiation and function, rather than affecting osteoblasts, resulting in a high bone mass in male mice. To the best of our knowledge, this is the first study to explore the direct and indirect roles of GULP1 in bone remodeling, providing new insights into its regulation.


Assuntos
Aromatase , Estradiol , Osteoclastos , Animais , Masculino , Camundongos , Aromatase/genética , Aromatase/metabolismo , Osso e Ossos , Diferenciação Celular , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Microtomografia por Raio-X , Estradiol/metabolismo
11.
J Clin Periodontol ; 49(7): 706-716, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569027

RESUMO

AIM: Mucosal-associated invariant T (MAIT) cells are known to be resident in oral mucosal tissue, but their roles in periodontitis are unknown. This study aimed to examine the level and function of MAIT cells in periodontitis patients. MATERIALS AND METHODS: Frequency, activation, and function of MAIT cells from 28 periodontitis patients and 28 healthy controls (HCs) were measured by flow cytometry. RESULTS: Circulating MAIT cells were numerically reduced in periodontitis patients. Moreover, they exhibited higher expression of CD69 and annexin V, together with more increased production of interleukin (IL)-17 and tumour necrosis factor (TNF)-α, in periodontitis patients than in HCs. Interestingly, periodontitis patients had higher frequencies of MAIT cells in gingival tissue than in peripheral blood. In addition, circulating MAIT cells had elevated expression of tissue-homing chemokine receptors such as CCR6 and CXCR6, and the corresponding chemokines (i.e., CCL20 and CXCL16) were more strongly expressed in inflamed gingiva than in healthy gingiva. CONCLUSIONS: This study demonstrates that circulating MAIT cells are numerically deficient with an activated profile toward the production of IL-17 and TNF-α in periodontitis patients. Furthermore, circulating MAIT cells have the potential to migrate to inflamed gingival tissues.


Assuntos
Interleucina-17/biossíntese , Células T Invariantes Associadas à Mucosa , Periodontite , Fator de Necrose Tumoral alfa/biossíntese , Citometria de Fluxo , Humanos , Interleucina-17/metabolismo , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/metabolismo , Periodontite/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563615

RESUMO

The LIM-homeodomain transcription factor Lmx1b plays a key role in body pattern formation during development. Although Lmx1b is essential for the normal development of multiple tissues, its regulatory mechanism in bone cells remains unclear. Here, we demonstrated that Lmx1b negatively regulates bone morphogenic protein 2 (BMP2)-induced osteoblast differentiation. Overexpressed Lmx1b in the osteoblast precursor cells inhibited alkaline phosphatase (ALP) activity and nodule formation, as well as the expression of osteoblast maker genes, including runt-related transcription factor 2 (Runx2), alkaline phosphatase (Alpl), bone sialoprotein (Ibsp), and osteocalcin (Bglap). Conversely, the knockdown of Lmx1b in the osteoblast precursors enhanced the osteoblast differentiation and function. Lmx1b physically interacted with and repressed the transcriptional activity of Runx2 by reducing the recruitment of Runx2 to the promoter region of its target genes. In vivo analysis of BMP2-induced ectopic bone formation revealed that the knockdown of Lmx1b promoted osteogenic differentiation and bone regeneration. Our data demonstrate that Lmx1b negatively regulates osteoblast differentiation and function through regulation of Runx2 and provides a molecular basis for therapeutic targets for bone diseases.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Fatores de Transcrição , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408860

RESUMO

Activating transcription factor 3 (ATF3) has been identified as a negative regulator of osteoblast differentiation in in vitro study. However, it was not associated with osteoblast differentiation in in vivo study. To provide an understanding of the discrepancy between the in vivo and in vitro findings regarding the function of ATF3 in osteoblasts, we investigated the unidentified roles of ATF3 in osteoblast biology. ATF3 enhanced osteoprotegerin (OPG) production, not only in osteoblast precursor cells, but also during osteoblast differentiation and osteoblastic adipocyte differentiation. In addition, ATF3 increased nodule formation in immature osteoblasts and decreased osteoblast-dependent osteoclast formation, as well as the transdifferentiation of osteoblasts to adipocytes. However, all these effects were reversed by the OPG neutralizing antibody. Taken together, these results suggest that ATF3 contributes to bone homeostasis by regulating the differentiation of various cell types in the bone microenvironment, including osteoblasts, osteoclasts, and adipocytes via inducing OPG production.


Assuntos
Osteoclastos , Osteoprotegerina , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Adipócitos/metabolismo , Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
14.
J Clin Periodontol ; 49(9): 932-944, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373367

RESUMO

AIM: To study the role of sclerostin in periodontal ligament (PDL) as a homeostatic regulator in biophysical-force-induced tooth movement (BFTM). MATERIALS AND METHODS: BFTM was performed in rats, followed by microarray, immunofluorescence, in situ hybridization, and real-time polymerase chain reaction for the detection and identification of the molecules. The periodontal space was analysed via micro-computed tomography. Effects on osteoclastogenesis and bone resorption were evaluated in the bone-marrow-derived cells in mice. In vitro human PDL cells were subjected to biophysical forces. RESULTS: In the absence of BFTM, sclerostin was hardly detected in the periodontium except in the PDL and alveolar bone in the furcation region and apex of the molar roots. However, sclerostin was up-regulated in the PDL in vivo by adaptable force, which induced typical transfiguration without changes in periodontal space as well as in vitro PDL cells under compression and tension. In contrast, the sclerostin level was unaffected by heavy force, which caused severe degeneration of the PDL and narrowed periodontal space. Sclerostin inhibited osteoclastogenesis and bone resorption, which corroborates the accelerated tooth movement by the heavy force. CONCLUSIONS: Sclerostin in PDL may be a key homeostatic molecule in the periodontium and a biological target for the therapeutic modulation of BFTM.


Assuntos
Reabsorção Óssea , Ligamento Periodontal , Animais , Humanos , Camundongos , Ligante RANK , Ratos , Técnicas de Movimentação Dentária , Microtomografia por Raio-X
15.
Tissue Eng Regen Med ; 19(3): 565-575, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34973125

RESUMO

BACKGROUND: The use of mouse bone marrow mesenchymal stem cells (mBMSCs) represents a promising strategy for performing preclinical studies in the field of cell-based regenerative medicine; however, mBMSCs obtained via conventional isolation methods have two drawbacks, i.e., (i) they are heterogeneous due to frequent macrophage contamination, and (ii) they require long-term culturing for expansion. METHODS: In the present study, we report a novel strategy to generate highly pure mBMSCs using liposomal clodronate. This approach is based on the properties of the two cell populations, i.e., BMSCs (to adhere to the plasticware in culture dishes) and macrophages (to phagocytose liposomes). RESULTS: Liposomal clodronate added during the first passage of whole bone marrow culture was selectively engulfed by macrophages in the heterogeneous cell population, resulting in their effective elimination without affecting the MSCs. This method allowed the generation of numerous high-purity Sca-1+CD44+F4/80- mBMSCs (> 95%) with just one passaging. Comparative studies with mBMSCs obtained using conventional methods revealed that the mBMSCs obtained in the present study had remarkably improved experimental utilities, as demonstrated by in vitro multilineage differentiation and in vivo ectopic bone formation assays. CONCLUSION: Our newly developed method, which enables the isolation of mBMSCs using simple and convenient protocol, will aid preclinical studies based on the use of MSCs.


Assuntos
Ácido Clodrônico , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Ácido Clodrônico/farmacologia , Lipossomos , Macrófagos , Camundongos
16.
Biomater Res ; 25(1): 30, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565474

RESUMO

OBJECTIVE: Various surface modification techniques that can further improve the function and usability of stainless steel as a medical device have been reported. In the present study, the physical and biological properties of nanoporous stainless steel as well as its usefulness for drug delivery were assessed. METHODS: The specimen was prepared with a circular disk shape (15 mm in diameter and 1 mm in thickness). The disk was subjected to electropolishing at a constant voltage of 20 V and 10 A for 10 min in an acidic environment (50% H2SO4). Everolimus (EVL) was used as a testing drug for drug-loading capacity of the material surface and release kinetics. The physiobiological properties of the material were assessed using platelet adhesion, and smooth muscle cell (SMC) adhesion, migration, and proliferation assays. RESULTS: The surface roughness of the postpolishing group was greater than that of the nonpolishing group. Platelet adhesion and SMC adhesion and migration were inhibited in the postpolishing group compared to those in the prepolishing group. In the postpolishing group, the total amount of EVL on the surface (i.e., drug storage rate) was higher and the drug release rate was lower, with half the amount of the EVL released within 4 days compared with only 1 day for that of the prepolishing group. CONCLUSION: Taken together, this stainless steel with a nanoporous surface could be used as a medical device for controlling cellular responses and carrying drugs.

17.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209812

RESUMO

Coupled signaling between bone-forming osteoblasts and bone-resorbing osteoclasts is crucial to the maintenance of bone homeostasis. We previously reported that v-crk avian sarcoma virus CT10 oncogene homolog-like (CrkL), which belongs to the Crk family of adaptors, inhibits bone morphogenetic protein 2 (BMP2)-mediated osteoblast differentiation, while enhancing receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation. In this study, we investigated whether CrkL can also regulate the coupling signals between osteoblasts and osteoclasts, facilitating bone homeostasis. Osteoblastic CrkL strongly decreased RANKL expression through its inhibition of runt-related transcription factor 2 (Runx2) transcription. Reduction in RANKL expression by CrkL in osteoblasts resulted in the inhibition of not only osteoblast-dependent osteoclast differentiation but also osteoclast-dependent osteoblast differentiation, suggesting that CrkL participates in the coupling signals between osteoblasts and osteoclasts via its regulation of RANKL expression. Therefore, CrkL bifunctionally regulates osteoclast differentiation through both a direct and indirect mechanism while it inhibits osteoblast differentiation through its blockade of both BMP2 and RANKL reverse signaling pathways. Collectively, these data suggest that CrkL is involved in bone homeostasis, where it helps to regulate the complex interactions of the osteoblasts, osteoclasts, and their coupling signals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Remodelação Óssea/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos ICR , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese/genética
18.
Exp Mol Med ; 53(5): 848-863, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33990690

RESUMO

STAT5 is a transcription factor that is activated by various cytokines, hormones, and growth factors. Activated STAT5 is then translocated to the nucleus and regulates the transcription of target genes, affecting several biological processes. Several studies have investigated the role of STAT5 in adipogenesis, but unfortunately, its role in adipogenesis remains controversial. In the present study, we generated adipocyte-specific Stat5 conditional knockout (cKO) (Stat5fl/fl;Apn-cre) mice to investigate the role of STAT5 in the adipogenesis of bone marrow mesenchymal stem cells (BMSCs). BMSC adipogenesis was significantly inhibited upon overexpression of constitutively active STAT5A, while it was enhanced in the absence of Stat5 in vitro. In vivo adipose staining and histological analyses revealed increased adipose volume in the bone marrow of Stat5 cKO mice. ATF3 is the target of STAT5 during STAT5-mediated inhibition of adipogenesis, and its transcription is regulated by the binding of STAT5 to the Atf3 promoter. ATF3 overexpression was sufficient to suppress the enhanced adipogenesis of Stat5-deficient adipocytes, and Atf3 silencing abolished the STAT5-mediated inhibition of adipogenesis. Stat5 cKO mice exhibited reduced bone volume due to an increase in the osteoclast number, and coculture of bone marrow-derived macrophages with Stat5 cKO adipocytes resulted in enhanced osteoclastogenesis, suggesting that an increase in the adipocyte number may contribute to bone loss. In summary, this study shows that STAT5 is a negative regulator of BMSC adipogenesis and contributes to bone homeostasis via direct and indirect regulation of osteoclast differentiation; therefore, it may be a leading target for the treatment of both obesity and bone loss-related diseases.


Assuntos
Adipócitos/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Homeostase , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição STAT5/metabolismo , Adipócitos/citologia , Adipogenia/genética , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteogênese/genética , Ligação Proteica , Fator de Transcrição STAT5/genética , Transdução de Sinais
19.
Exp Mol Med ; 53(4): 591-604, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811248

RESUMO

Aging is associated with cellular senescence followed by bone loss leading to bone fragility in humans. However, the regulators associated with cellular senescence in aged bones need to be identified. Hypoxia-inducible factor (HIF)-2α regulates bone remodeling via the differentiation of osteoblasts and osteoclasts. Here, we report that HIF-2α expression was highly upregulated in aged bones. HIF-2α depletion in male mice reversed age-induced bone loss, as evidenced by an increase in the number of osteoblasts and a decrease in the number of osteoclasts. In an in vitro model of doxorubicin-mediated senescence, the expression of Hif-2α and p21, a senescence marker gene, was enhanced, and osteoblastic differentiation of primary mouse calvarial preosteoblast cells was inhibited. Inhibition of senescence-induced upregulation of HIF-2α expression during matrix maturation, but not during the proliferation stage of osteoblast differentiation, reversed the age-related decrease in Runx2 and Ocn expression. However, HIF-2α knockdown did not affect p21 expression or senescence progression, indicating that HIF-2α expression upregulation in senescent osteoblasts may be a result of aging rather than a cause of cellular senescence. Osteoclasts are known to induce a senescent phenotype during in vitro osteoclastogenesis. Consistent with increased HIF-2α expression, the expression of p16 and p21 was upregulated during osteoclastogenesis of bone marrow macrophages. ChIP following overexpression or knockdown of HIF-2α using adenovirus revealed that p16 and p21 are direct targets of HIF-2α in osteoclasts. Osteoblast-specific (Hif-2αfl/fl;Col1a1-Cre) or osteoclast-specific (Hif-2αfl/fl;Ctsk-Cre) conditional knockout of HIF-2α in male mice reversed age-related bone loss. Collectively, our results suggest that HIF-2α acts as a senescence-related intrinsic factor in age-related dysfunction of bone homeostasis.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Suscetibilidade a Doenças , Osteoporose/etiologia , Osteoporose/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores , Densidade Óssea , Remodelação Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Genótipo , Humanos , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoporose/diagnóstico por imagem , Osteoporose/patologia , Microtomografia por Raio-X
20.
Int J Mol Sci ; 22(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671948

RESUMO

Alveolar bone loss, the major feature of periodontitis, results from the activation of osteoclasts, which can consequently cause teeth to become loose and fall out; the development of drugs capable of suppressing excessive osteoclast differentiation and function is beneficial for periodontal disease patients. Given the difficulties associated with drug discovery, drug repurposing is an efficient approach for identifying alternative uses of commercially available compounds. Here, we examined the effects of PF-3845, a selective fatty acid amide hydrolase (FAAH) inhibitor, on receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis, its function, and the therapeutic potential for the treatment of alveolar bone destruction in experimental periodontitis. PF-3845 significantly suppressed osteoclast differentiation and decreased the induction of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific markers. Actin ring formation and osteoclastic bone resorption were also reduced by PF-3845, and the anti-osteoclastogenic and anti-resorptive activities were mediated by the suppression of phosphorylation of rapidly accelerated fibrosarcoma (RAF), mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase, (ERK) and nuclear factor κB (NF-κB) inhibitor (IκBα). Furthermore, the administration of PF-3845 decreased the number of osteoclasts and the amount of alveolar bone destruction caused by ligature placement in experimental periodontitis in vivo. The present study provides evidence that PF-3845 is able to suppress osteoclastogenesis and prevent alveolar bone loss, and may give new insights into its role as a treatment for osteoclast-related diseases.


Assuntos
Perda do Osso Alveolar/tratamento farmacológico , Amidoidrolases/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Osteogênese/efeitos dos fármacos , Periodontite/tratamento farmacológico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Animais , Reabsorção Óssea/tratamento farmacológico , Células Cultivadas , Modelos Animais de Doenças , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA