Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Natl Cancer Inst ; 113(2): 112-122, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348501

RESUMO

Up to 85% of adult cancer survivors and 99% of adult survivors of childhood cancer live with an accumulation of chronic conditions, frailty, and/or cognitive impairments resulting from cancer and its treatment. Thus, survivors often show an accelerated development of multiple geriatric syndromes and need therapeutic interventions. To advance progress in this area, the National Cancer Institute convened the second of 2 think tanks under the auspices of the Cancer and Accelerated Aging: Advancing Research for Healthy Survivors initiative. Experts assembled to share evidence of promising strategies to prevent, slow, or reverse the aging consequences of cancer and its treatment. The meeting identified research and resource needs, including geroscience-guided clinical trials; comprehensive assessments of functional, cognitive, and psychosocial vulnerabilities to assess and predict age-related outcomes; preclinical and clinical research to determine the optimal dosing for behavioral (eg, diet, exercise) and pharmacologic (eg, senolytic) therapies; health-care delivery research to evaluate the efficacy of integrated cancer care delivery models; optimization of intervention implementation, delivery, and uptake; and patient and provider education on cancer and treatment-related late and long-term adverse effects. Addressing these needs will expand knowledge of aging-related consequences of cancer and cancer treatment and inform strategies to promote healthy aging of cancer survivors.


Assuntos
Envelhecimento/patologia , Fragilidade/epidemiologia , Múltiplas Afecções Crônicas/epidemiologia , Neoplasias/epidemiologia , Sobreviventes de Câncer , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Fragilidade/etiologia , Humanos , National Cancer Institute (U.S.) , Neoplasias/complicações , Neoplasias/patologia , Neoplasias/terapia , Estados Unidos/epidemiologia
2.
J Natl Cancer Inst ; 111(12): 1245-1254, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31321426

RESUMO

Observational data have shown that some cancer survivors develop chronic conditions like frailty, sarcopenia, cardiac dysfunction, and mild cognitive impairment earlier and/or at a greater burden than similarly aged individuals never diagnosed with cancer or exposed to systemic or targeted cancer therapies. In aggregate, cancer- and treatment-related physical, cognitive, and psychosocial late- and long-term morbidities experienced by cancer survivors are hypothesized to represent accelerated or accentuated aging trajectories. However, conceptual, measurement, and methodological challenges have constrained efforts to identify, predict, and mitigate aging-related consequences of cancer and cancer treatment. In July 2018, the National Cancer Institute convened basic, clinical, and translational science experts for a think tank titled "Measuring Aging and Identifying Aging Phenotypes in Cancer Survivors." Through the resulting deliberations, several research and resource needs were identified, including longitudinal studies to examine aging trajectories that include detailed data from before, during, and after cancer treatment; mechanistic studies to elucidate the pathways that lead to the emergence of aging phenotypes in cancer survivors; long-term clinical surveillance to monitor survivors for late-emerging effects; and tools to integrate multiple data sources to inform understanding of how cancer and its therapies contribute to the aging process. Addressing these needs will help expand the evidence base and inform strategies to optimize healthy aging of cancer survivors.


Assuntos
Envelhecimento/fisiologia , Sobreviventes de Câncer , Neoplasias/fisiopatologia , Fenótipo , Fatores Etários , Biomarcadores , Doença Crônica , Disfunção Cognitiva/etiologia , Conferências para Desenvolvimento de Consenso de NIH como Assunto , Medicina Baseada em Evidências , Fragilidade/etiologia , Cardiopatias/etiologia , Humanos , National Cancer Institute (U.S.) , Neoplasias/complicações , Neoplasias/terapia , Desempenho Físico Funcional , Sarcopenia/etiologia , Estados Unidos
3.
Ann N Y Acad Sci ; 1386(1): 30-44, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27907230

RESUMO

Aging is the major risk factor for both the development of chronic diseases and loss of functional capacity. Geroscience provides links among the biology of aging, the biology of disease, and the physiology of frailty, three fields where enormous progress has been made in the last few decades. While, previously, the focus was on the role of aging in susceptibility to disease and disability, the other side of this relationship, which is the contribution of disease to aging, has been less explored at the molecular/cellular level. Indeed, the role of childhood or early adulthood exposure to chronic disease and/or treatment on accelerating aging phenotypes is well known in epidemiology, but the biological basis is poorly understood. A recent summit co-organized by the National Institutes of Health GeroScience Interest Group and the New York Academy of Sciences explored these relationships, using three chronic diseases as examples: cancer, HIV/AIDS, and diabetes. The epidemiological literature clearly indicates that early exposure to any of these diseases and/or their treatments results in an acceleration of the appearance of aging phenotypes, including loss of functional capacity and accelerated appearance of clinical symptoms of aging-related diseases not obviously related to the earlier event. The discussions at the summit focused on the molecular and cellular relationships between each of these diseases and the recently defined molecular and cellular pillars of aging. Two major conclusions from the meeting include the desire to refine an operational definition of aging and to concomitantly develop biomarkers of aging, in order to move from chronological to physiological age. The discussion also opened a dialogue on the possibility of improving late-life outcomes in patients affected by chronic disease by including age-delaying modalities along with the standard care for the disease in question.


Assuntos
Síndrome da Imunodeficiência Adquirida , Envelhecimento , Biomarcadores Tumorais , Diabetes Mellitus , Neoplasias , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/metabolismo , Síndrome da Imunodeficiência Adquirida/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Doença Crônica , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
4.
Proc Natl Acad Sci U S A ; 106(46): 19617-22, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19887630

RESUMO

Insulin/Insulin-like growth factor signaling regulates homeostasis and growth in mammals, and is implicated in diseases from diabetes to cancer. In Drosophila melanogaster, as in other invertebrates, multiple Insulin-Like Peptides (DILPs) are encoded by a family of related genes. To assess DILPs' physiological roles, we generated small deficiencies that uncover single or multiple dilps, generating genetic loss-of-function mutations. Deletion of dilps1-5 generated homozygotes that are small, severely growth-delayed, and poorly viable and fertile. These animals display reduced metabolic activity, decreased triglyceride levels and prematurely activate autophagy, indicative of "starvation in the midst of plenty," a hallmark of Type I diabetes. Furthermore, circulating sugar levels are elevated in Df [dilp1-5] homozygotes during eating and fasting. In contrast, Df[dilp6] or Df[dilp7] animals showed no major metabolic defects. We discuss physiological differences between mammals and insects that may explain the unexpected survival of lean, 'diabetic' flies.


Assuntos
Autofagia , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Insulina/genética , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Deleção de Genes , Glucose/metabolismo , Homozigoto , Triglicerídeos/metabolismo
5.
Ann N Y Acad Sci ; 1116: 165-73, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17646258

RESUMO

In cartilage and bone-producing cells, proliferation and growth are balanced with terminal differentiation. Maintaining this balance is essential for modeling, growth, and maintenance of the skeleton. Cartilage growth follows a program regulated by hormones and cytokines interacting with a counter-regulatory system in which hedgehog and parathyroid hormone (PTH)-rP signals are key elements. This maintains chondrocyte proliferation and, at specific sites, allows differentiation. Bone is produced by differentiation of mesenchymal stem cells on a scaffold of mineralizing cartilage. However, bone, once formed, is continually resorbed and replaced. Thus, maintenance of bone mass requires retention of stem cells and preosteoblasts in undifferentiated division-competent stages. Maintenance of the undifferentiated states is poorly understood, whereas the rate of osteoblast formation is regulated in part by PTH and insulin-like growth factor. The precursor pool is also subject to depletion by differentiation of mesenchymal stem cells to nonbone cells including adipocytes. In the aging skeleton, disordered balance between bone formation and resorption is in major part due to immune dysregulation that increases formation of bone-degrading osteoclasts; tumor necrosis factor (TNF)-alpha is a major intermediate in this process.


Assuntos
Osso e Ossos/citologia , Diferenciação Celular , Proliferação de Células , Animais , Desenvolvimento Ósseo , Condrócitos/citologia , Proteínas Hedgehog/fisiologia , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia
6.
Hum Mutat ; 27(7): 717-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16786512

RESUMO

We describe a novel missense mutation (Aspartic acid to Asparagine, p.D419N (g.1371G>A, c.1255G>A) within exon 9 of SH3BP2 in a patient with cherubism, an autosomal dominant syndrome characterized by excessive osteoclastic bone resorption of the jaw. Two siblings and the father were carriers but lacked phenotypic features. Transient expression of p.D419N (c.1255G>A), as well as three previously described exon 9 mutations from cherubism patients (p.R415Q (c.1244G>A), p.D420E (c.1259G>A), and p.P418R (c.1253C>G)) increased activity of NFAT (nuclear factor of activated T-cells), an osteoclastogenic mediator, indicating that cherubism results from gain of function mutations in SH3BP2.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Querubismo/genética , Mutação de Sentido Incorreto , Fatores de Transcrição NFATC/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alelos , Querubismo/diagnóstico por imagem , Querubismo/metabolismo , Pré-Escolar , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Células Jurkat , Masculino , Mutagênese Sítio-Dirigida , Linhagem , Radiografia
7.
Mol Endocrinol ; 16(12): 2764-79, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12456798

RESUMO

Insulin stimulates signal transducer and activator of transcription 5 (Stat5) activation in insulin receptor (IR)-overexpressing cell lines and in insulin target tissues of mice. Stat5b and insulin receptor substrate 1 (IRS-1) interact with the same autophosphorylation site in the IR [phosphotyrosine (pY) 972] in yeast two-hybrid assays, and the IR phosphorylates Stat5b in vitro. These data suggest that Stat5 proteins might be recruited to, and phosphorylated by, the activated IR in vivo. Nevertheless, insulin activates Janus kinases (JAKs) in IR-overexpressing cell lines and in insulin target tissues. To determine whether Stat5 proteins must be recruited to the pY972LSA motif in the IR for insulin-stimulated activation in mammalian cells, we generated and tested a series of IR mutants. The L973R/A975D mutation abolishes the ability of the IR to induce Stat5 activation, whereas IRS-1 phosphorylation is unaffected. In contrast, the N969A/P970A mutation in the IR has no effect on Stat5 activation but significantly reduces IRS-1 phosphorylation. In coimmunoprecipitation assays, insulin-stimulated Stat5 activation correlates with Stat5 recruitment to the IR. We also find that insulin stimulates tyrosine phosphorylation of JAKs that are constitutively associated with the IR. Expression of dominant-negative (DN) JAKs, the JAK inhibitor suppressor of cytokine signaling 1, or pretreatment with the JAK inhibitor, AG490, reduces, but does not eliminate, insulin-induced Stat5 activation. Expression of the appropriate pair of DN JAKs in each of the singly JAK-deficient cell lines further establishes a component of insulin-stimulated Stat5 activation that is JAK independent. This likely represents phosphorylation of Stat5 proteins by the IR, as we find that IR kinase domain phosphorylates Stat5b in vitro on Y699 as efficiently as JAK2. Increasing the concentration of Stat5 proteins in cells favors the direct phosphorylation of Stat5 by the IR kinase where the DN-JAK inhibition of insulin-stimulated Stat5 activation becomes insignificant. At physiological levels of Stat5 however, we propose that JAKs and the IR both contribute to the insulin-induced phosphorylation of Stat5.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Leite , Proteínas Proto-Oncogênicas , Receptor de Insulina/fisiologia , Proteínas Repressoras , Transativadores/metabolismo , Animais , Baculoviridae/genética , Células COS , Proteínas de Transporte/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Humanos , Técnicas de Imunoadsorção , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Janus Quinase 1 , Janus Quinase 2 , Neoplasias Hepáticas Experimentais/metabolismo , Luciferases/genética , Mutagênese , Fosfoproteínas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/metabolismo , Ratos , Receptor de Insulina/genética , Fator de Transcrição STAT5 , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina , Transfecção , Células Tumorais Cultivadas , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA