Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 68(5): 494-510, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341854

RESUMO

The replacement of the Desert Research Institute (DRI) model 2001 with model 2015 thermal/optical analyzers (TOAs) results in continuity of the long-term organic carbon (OC) and elemental carbon (EC) database, and it adds optical information with no additional carbon analysis effort. The value of multiwavelength light attenuation is that light absorption due to black carbon (BC) can be separated from that of brown carbon (BrC), with subsequent attribution to known sources such as biomass burning and secondary organic aerosols. There is evidence of filter loading effects for the 25% of all samples with the highest EC concentrations based on the ratio of light attenuation to EC. Loading corrections similar to those used for the seven-wavelength aethalometer need to be investigated. On average, nonurban Interagency Monitoring of PROtected Visual Environments (IMPROVE) samples show higher BrC fractions of short-wavelength absorption than urban Chemical Speciation Network (CSN) samples, owing to greater influence from biomass burning and aged aerosols, as well as to higher primary BC contributions from engine exhaust at urban sites. Sequential samples taken during an Everglades National Park wildfire demonstrate the evolution from flaming to smoldering combustion, with the BrC fraction increasing as smoldering begins to dominate the fire event. IMPLICATIONS: The inclusion of seven wavelengths in thermal/optical carbon analysis of speciated PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) samples allows contributions from biomass burning and secondary organic aerosols to be estimated. This separation is useful for evaluating control strategy effectiveness, identifying exceptional events, and determining natural visibility conditions.


Assuntos
Carbono/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Fuligem/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomassa , Carbono/química , Tamanho da Partícula , Material Particulado/química , Fuligem/química , Emissões de Veículos/análise , Incêndios Florestais
2.
J Air Waste Manag Assoc ; 65(12): 1421-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453048

RESUMO

UNLABELLED: Geological samples were collected from 27 representative locations in the Athabasca Oil Sands Region (AOSR) in Alberta, Canada. These samples were resuspended onto filter substrates for PM2.5 and PM10 size fractions. Samples were analyzed for 229 chemical species, consisting of elements, ions, carbon, and organic compounds. These chemical species are normalized to gravimetric mass to derive individual source profiles. Individual profiles were grouped into six categories typical of those used in emission inventories: paved road dust, unpaved road dust close to and distant from oil sand operations, overburden soil, tailings sands, and forest soils. Consistent with their geological origin, the major components are minerals, organic and elemental carbon, and ions. The sum of five major elements (i.e., Al, Si, K, Ca, and Fe) and their oxidized forms account for 25-40% and 45-82% of particulate matter (PM) mass, respectively. Si is the most abundant element, averaging 17-18% in the Facility (oil sand operations) and 23-27% in the Forest profiles. Organic carbon is the second most abundant species, averaging 9-11% in the Facility and 5-6% in the Forest profiles. Elemental carbon abundance is 2-3 times higher in Facility than Forest profiles. Sulfate abundance is ~7 times higher in the Facility than in the Forest profiles. The ratios of cation/anion and base cation (sum of Na+, Mg2+, K+, and Ca2+)/nitrogen- and sulfur-containing ions (sum of NH4+, NO2-, NO3-, and SO4(2-)) exceed unity, indicating that the soils are basic. Lead (Pb) isotope ratios of facility soils are similar to the AOSR stack and diesel emissions, while those of forest soils have much lower 206Pb/207Pb and 208Pb/207Pb ratios. High-molecular-weight n-alkanes (C25-C40), hopanes, and steranes are more than an order of magnitude more abundant in Facility than Forest profiles. These differences may be useful for separating anthropogenic from natural sources of fugitive dust at receptors. IMPLICATIONS: Several organic compounds typical of combustion emissions and bitumen are enriched relative to forest soils for fugitive dust sources near oil sands operations, consistent with deposition uptake by biomonitors. AOSR dust samples are alkaline, not acidic, indicating that potential acid deposition is neutralized. Chemical abundances are highly variable within emission inventory categories, implying that more specific subcategories can be defined for inventory speciation.


Assuntos
Poluentes Atmosféricos/química , Poeira/análise , Tamanho da Partícula , Material Particulado/química , Canadá , Carbono/química , Monitoramento Ambiental , Chumbo/química , Metais Terras Raras/química , Compostos Orgânicos/química , Petróleo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA