Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 161(5): 435-444, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38396247

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.


Assuntos
Proteínas Nucleares , Complexo de Endopeptidases do Proteassoma , Proteínas Repressoras , Rabdomiossarcoma , Humanos , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Rabdomiossarcoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/análise , Linhagem Celular Tumoral
2.
J Cancer Res Clin Oncol ; 149(13): 10975-10987, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37270734

RESUMO

PURPOSE: Sarcomas are rare and heterogenic tumors with unclear etiology. They develop in bone and connective tissue, mainly in pediatric patients. To increase efficacy of current therapeutic options, natural products showing selective toxicity to tumor cells are extensively investigated. Here, we evaluated antitumor activity of bacterial pigment violacein in osteosarcoma (OS) and rhabdomyosarcoma (RMS) cell lines. METHODS: The toxicity of violacein was assessed in vitro and in vivo, using MTT assay and FET test. The effect of violacein on cell migration was monitored by wound healing assay, cell death by flow cytometry, uptake of violacein by fluorescence microscopy, generation of reactive oxygen species (ROS) by DCFH-DA assay and lipid peroxidation by TBARS assay. RESULTS: Violacein IC50 values for OS and RMS cells were in a range from 0.35 to 0.88 µM. Its selectivity toward malignant phenotype was confirmed on non-cancer V79-4 cells, and it was safe in vivo, for zebrafish embryos in doses up to 1 µM. Violacein induced apoptosis and affected the migratory potential of OS and RMS cells. It was found on the surfaces of tested cells. Regarding the mechanism of action, violacein acted on OS and RMS cells independently of oxidative signaling, as judged by no increase in intracellular ROS generation and no lipid peroxidation. CONCLUSION: Our study provided further evidence that reinforces the potential of violacein as an anticancer agent and candidate to consider for improvement of the effectiveness of traditional OS and RMS therapies.


Assuntos
Osteossarcoma , Rabdomiossarcoma , Animais , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Linhagem Celular , Apoptose , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células
3.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628361

RESUMO

Bronchial epithelial cells are exposed to environmental influences, microbiota, and pathogens and also serve as a powerful effector that initiate and propagate inflammation by the release of pro-inflammatory mediators. Recent studies suggested that lung microbiota differ between inflammatory lung diseases and healthy lungs implicating their contribution in the modulation of lung immunity. Lactic acid bacteria (LAB) are natural inhabitants of healthy human lungs and also possess immunomodulatory effects, but so far, there are no studies investigating their anti-inflammatory potential in respiratory cells. In this study, we investigated immunomodulatory features of 21 natural LAB strains in lipopolysaccharide (LPS)-stimulated human bronchial epithelial cells (BEAS-2B). Our results show that several LAB strains reduced the expression of pro-inflammatory cytokine and chemokine genes. We also demonstrated that two LAB strains, Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22, effectively attenuated LPS-induced nuclear factor-κB (NF-κB) nuclear translocation. Moreover, BGZLS10-17 and BGPKM22 reduced the activation of p38, extracellular signal-related kinase (ERK), and c-Jun amino-terminal kinase (JNK) signaling cascade resulting in a reduction of pro-inflammatory mediator expressions in BEAS-2B cells. Collectively, the LAB strains BGZLS10-17 and BGPKM22 exhibited anti-inflammatory effects in BEAS-2B cells and could be employed to balance immune response in lungs and replenish diminished lung microbiota in chronic lung diseases.


Assuntos
Brônquios , Levilactobacillus brevis , Pneumopatias , Sistema de Sinalização das MAP Quinases , NF-kappa B , Anti-Inflamatórios/farmacologia , Brônquios/citologia , Brônquios/metabolismo , Brônquios/microbiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Levilactobacillus brevis/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Pneumopatias/metabolismo , Pneumopatias/terapia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo
4.
Eur J Med Chem ; 238: 114449, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580425

RESUMO

The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Cádmio/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Humanos , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Ligantes , Neoplasias/tratamento farmacológico , Enxofre/farmacologia , Enxofre/uso terapêutico
5.
Cancers (Basel) ; 13(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419058

RESUMO

Ankrd2 is a protein known for being mainly expressed in muscle fibers, where it participates in the mechanical stress response. Since both myocytes and osteoblasts are mesenchymal-derived cells, we were interested in examining the role of Ankrd2 in the progression of osteosarcoma which features a mechano-stress component. Although having been identified in many tumor-derived cell lines and -tissues, no study has yet described nor hypothesized any involvement for this protein in osteosarcoma tumorigenesis. In this paper, we report that Ankrd2 is expressed in cell lines obtained from human osteosarcoma and demonstrate a contribution by this protein in the pathogenesis of this insidious disease. Ankrd2 involvement in osteosarcoma development was evaluated in clones of Saos2, U2OS, HOS and MG63 cells stably expressing Ankrd2, through the investigation of hallmark processes of cancer cells. Interestingly, we found that exogenous expression of Ankrd2 influenced cellular growth, migration and clonogenicity in a cell line-dependent manner, whereas it was able to improve the formation of 3D spheroids in three out of four cellular models and enhanced matrix metalloproteinase (MMP) activity in all tested cell lines. Conversely, downregulation of Ankrd2 expression remarkably reduced proliferation and clonogenic potential of parental cells. As a whole, our data present Ankrd2 as a novel player in osteosarcoma development, opening up new therapeutic perspectives.

6.
Environ Mol Mutagen ; 57(6): 447-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270564

RESUMO

The aetiology of chronic obstructive pulmonary disease (COPD) is complex. While cigarette smoking is a well-established cause of COPD, a myriad of assessed genetic factors has given conflicting data. Since gene-environment interactions are thought to be implicated in aetiopathogenesis of COPD, we aimed to examine the matrix metalloproteinase (MMP) 9 C-1562T (rs3918242) functional variant and cigarette smoke in the pathogenesis of this disease. The distribution of the MMP9 C-1562T variant was analyzed in COPD patients and controls with normal pulmonary function from Serbia. Interaction between the C-1562T genetic variant and cigarette smoking was assessed using a case-control model. The response of the C-1562T promoter variant to cigarette smoke condensate (CSC) exposure was examined using a dual luciferase reporter assay. The frequency of T allele carriers was higher in the COPD group than in smoker controls (38.4% vs. 20%; OR = 2.7, P = 0.027). Interaction between the T allele and cigarette smoking was identified in COPD occurrence (OR = 4.38, P = 0.005) and severity (P = 0.001). A functional analysis of the C-1562T variant demonstrated a dose-dependent and allele-specific response (P < 0.01) to CSC. Significantly higher MMP9 promoter activity following CSC exposure was found for the promoter harboring the T allele compared to the promoter harboring the C allele (P < 0.05). Our study is the first to reveal an interaction between the MMP9-1562T allele and cigarette smoke in COPD, emphasising gene-environment interactions as a possible cause of lung damage in the pathogenesis of COPD. Environ. Mol. Mutagen. 57:447-454, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Interação Gene-Ambiente , Variação Genética , Metaloproteinase 9 da Matriz/genética , Regiões Promotoras Genéticas , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumar/efeitos adversos , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Frequência do Gene , Genótipo , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/genética , Células U937
7.
Exp Mol Pathol ; 100(1): 31-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657000

RESUMO

INTRODUCTION: Angiogenesis is the growth of both new vascular and lymphatic blood vessels from the existing vasculature. During this process, blood endothelial cells (BECs) and lymphatic endothelial cells (LECs) express specific markers, which help their discrimination and easier identification. Since the coronary thrombi material aspirated from patients with ST-elevation myocardial infarction (STEMI) proved as good angiogenesis model, we investigated the expression of CD34 and CD31 as BECs markers, and D2-40, LYVE-1 and VEGFR3 as LEC markers in this material. MATERIALS AND METHODS: Aspirated thrombi were stained immunohistochemically for CD34, CD31, D2-40, LYVE-1 and VEGFR3. Organizational patterns of immunopositive cells were graded as single cells, clusters or microvessels. Double immunofluorescence for CD31, D2-40, LYVE-1 and VEGRF3 was done. Thrombi were also graded as fresh (<1day old), lytic (1-5days old) and organized (>5days old). RESULTS: Serial sections of aspirated thrombi showed concordant BEC and LEC markers immunopositivity. Double immunoflorescence proved co-expression of CD31 and LEC markers on the same cells. Cells expressing LEC markers organized in clusters and microvessels were mainly present in lytic and organized thrombi. CONCLUSION: Co-expression of BEC and LEC markers on the same non-tumorous cell during thrombus neovascularization indicates existing in vivo plasticity of endothelial cells under non-tumorous pathological conditions. It also points that CD34 and CD31 on one hand, and D2-40, LYVE-1 and VEGFR3 immunostaining on the other hand, cannot solely be a reliable indicators whether vessel is lymphatic or not.


Assuntos
Antígenos CD34/metabolismo , Células Endoteliais/metabolismo , Infarto do Miocárdio/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Biomarcadores/análise , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Infarto do Miocárdio/patologia , Neovascularização Patológica/metabolismo , Trombose/metabolismo
8.
Arch Biochem Biophys ; 569: 45-53, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25677450

RESUMO

Transcription factor Nkx2.5, essential for heart development, regulates cardiomyocyte-specific gene expression through combinatorial interactions with other cardiac-restricted (GATA4 and dHAND) or ubiquitous (p300) transcription regulators. Here we demonstrate that Nkx2.5 and p53 synergistically activate the promoter of the striated muscle stress responsive transcriptional cofactor Ankrd2, involved in coordination of proliferation and apoptosis during myogenic differentiation. Moreover, the p53 protein is able to interact with both wild type Nkx2.5 and its mutant ΔNkx2.5 (aa 1-198) found in patients with diverse cardiac malformations. Nkx2.5 interaction site of p53 maps to the C terminal region, while p53 binding site on Nkx2.5 lies outside its C terminus. In addition, overexpression of Nkx2.5 has a modulatory, promoter dependent effect on p53 transactivation, while the mutant significantly abolished p53 activity on the Mdm2, p21(WAF1/CIP1) and Bax promoters. Their physical interaction contributes to the observed behavior in the case of the Mdm2 promoter. Our data provide a new evidence for the role of p53 in cardiac function through interaction with Nkx2.5.


Assuntos
Proteínas de Homeodomínio/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Sítios de Ligação/genética , Células COS , Linhagem Celular , Proliferação de Células , Chlorocebus aethiops , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação da Expressão Gênica , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética
9.
Mol Biol Rep ; 41(9): 6133-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969485

RESUMO

Alpha-1 antitrypsin (AAT) gene is highly polymorphic, with a large number of rare variants whose phenotypic consequences often remain inconclusive. Studies addressing functional characteristics of AAT variants are of significant biomedical importance since deficiency and dysfunctionality of AAT are associated with liver and lung diseases. We report the results of the functional analysis of two naturally occurring AAT variants, G320R and V321F, previously identified in patients with lung disease. Neither of variants has been fully functionally characterized. In order to perform their functional analysis both variants were expressed in prokaryotic and eukaryotic systems and their intracellular localization, activity, stability, and polymerization were determined. The results of this study demonstrated that variants G320R and V321F have neither impaired activity against porcine pancreatic elastase nor propensity to form polymers. However, both variants had altered electrophoretic mobility and reduced thermostability when compared to M variant of the protein, indicating a slightly impaired secondary or tertiary structure.


Assuntos
alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Animais , Células COS , Chlorocebus aethiops , Clonagem Molecular , Eletroforese , Escherichia coli/genética , Imunofluorescência , Variação Genética , Células Hep G2 , Humanos , Hepatopatias/genética , Pneumopatias/genética , Microscopia Confocal , Fenótipo , Suínos , Transfecção
10.
PLoS One ; 9(3): e92259, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24647531

RESUMO

ZASP is a cytoskeletal PDZ-LIM protein predominantly expressed in striated muscle. It forms multiprotein complexes and plays a pivotal role in the structural integrity of sarcomeres. Mutations in the ZASP protein are associated with myofibrillar myopathy, left ventricular non-compaction and dilated cardiomyopathy. The ablation of its murine homologue Cypher results in neonatal lethality. ZASP has several alternatively spliced isoforms, in this paper we clarify the nomenclature of its human isoforms as well as their dynamics and expression pattern in striated muscle. Interaction is demonstrated between ZASP and two new binding partners both of which have roles in signalling, regulation of gene expression and muscle differentiation; the mechanosensing protein Ankrd2 and the tumour suppressor protein p53. These proteins and ZASP form a triple complex that appears to facilitate poly-SUMOylation of p53. We also show the importance of two of its functional domains, the ZM-motif and the PDZ domain. The PDZ domain can bind directly to both Ankrd2 and p53 indicating that there is no competition between it and p53 for the same binding site on Ankrd2. However there is competition for this binding site between p53 and a region of the ZASP protein lacking the PDZ domain, but containing the ZM-motif. ZASP is negative regulator of p53 in transactivation experiments with the p53-responsive promoters, MDM2 and BAX. Mutations in the ZASP ZM-motif induce modification in protein turnover. In fact, two mutants, A165V and A171T, were not able to bind Ankrd2 and bound only poorly to alpha-actinin2. This is important since the A165V mutation is responsible for zaspopathy, a well characterized autosomal dominant distal myopathy. Although the mechanism by which this mutant causes disease is still unknown, this is the first indication of how a ZASP disease associated mutant protein differs from that of the wild type ZASP protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Músculo Estriado/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Actinina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Repetição de Anquirina , Sítios de Ligação , Linhagem Celular , Recuperação de Fluorescência Após Fotodegradação , Humanos , Espaço Intracelular/metabolismo , Proteínas com Domínio LIM/química , Camundongos , Proteínas Musculares/química , Proteínas Mutantes/metabolismo , Mutação , Proteínas Nucleares/química , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de Proteínas/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Repressoras/química , Ativação Transcricional , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
Crit Rev Clin Lab Sci ; 48(5-6): 269-94, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22185618

RESUMO

Remodeling is a stringently controlled process that enables adequate response of muscle cells to constant physical stresses. In this process, different kinds of stimuli have to be sensed and converted into biochemical signals that ultimately lead to alterations of muscle phenotype. Several multiprotein complexes located in the sarcomere and organized on the titin molecular spring have been identified as stress sensors and signal transducers. In this review, we focus on Ankrd1/CARP and Ankrd2/Arpp proteins,which belong to the muscle ankyrin repeat protein family (MARP) involved in a mechano-signaling pathway that links myofibrillar stress response to muscle gene expression. Apart from the mechanosensory function, they have an important role in transcriptional regulation, myofibrillar assembly, cardiogenesis and myogenesis. Their altered expression has been demonstrated in neuromuscular disorders, cardiovascular diseases, as well as in tumors, suggesting a role in pathological processes. Although analyzed in a limited number of patients, there is a considerable body of evidence that MARP proteins could be suitable candidates for prognostic and diagnostic biomarkers.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Adaptação Fisiológica/fisiologia , Biomarcadores/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Desenvolvimento Muscular/fisiologia , Neoplasias/metabolismo , Doenças Neuromusculares/metabolismo
12.
PLoS One ; 6(10): e25519, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016770

RESUMO

BACKGROUND: Ankrd2 (also known as Arpp) together with Ankrd1/CARP and DARP are members of the MARP mechanosensing proteins that form a complex with titin (N2A)/calpain 3 protease/myopalladin. In muscle, Ankrd2 is located in the I-band of the sarcomere and moves to the nucleus of adjacent myofibers on muscle injury. In myoblasts it is predominantly in the nucleus and on differentiation shifts from the nucleus to the cytoplasm. In agreement with its role as a sensor it interacts both with sarcomeric proteins and transcription factors. METHODOLOGY/PRINCIPAL FINDINGS: Expression profiling of endogenous Ankrd2 silenced in human myotubes was undertaken to elucidate its role as an intermediary in cell signaling pathways. Silencing Ankrd2 expression altered the expression of genes involved in both intercellular communication (cytokine-cytokine receptor interaction, endocytosis, focal adhesion, tight junction, gap junction and regulation of the actin cytoskeleton) and intracellular communication (calcium, insulin, MAPK, p53, TGF-ß and Wnt signaling). The significance of Ankrd2 in cell signaling was strengthened by the fact that we were able to show for the first time that Nkx2.5 and p53 are upstream effectors of the Ankrd2 gene and that Ankrd1/CARP, another MARP member, can modulate the transcriptional ability of MyoD on the Ankrd2 promoter. Another novel finding was the interaction between Ankrd2 and proteins with PDZ and SH3 domains, further supporting its role in signaling. It is noteworthy that we demonstrated that transcription factors PAX6, LHX2, NFIL3 and MECP2, were able to bind both the Ankrd2 protein and its promoter indicating the presence of a regulatory feedback loop mechanism. CONCLUSIONS/SIGNIFICANCE: In conclusion we demonstrate that Ankrd2 is a potent regulator in muscle cells affecting a multitude of pathways and processes.


Assuntos
Mecanotransdução Celular , Proteínas Musculares/metabolismo , Músculo Estriado/citologia , Músculo Estriado/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Humanos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Proteína MyoD/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Domínios PDZ , Regiões Promotoras Genéticas/genética , Interferência de RNA , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo , Domínios de Homologia de src
13.
Cancer Epidemiol ; 35(3): 265-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21036691

RESUMO

BACKGROUND: The tumor suppressor gene SMAD4 (DPC4) encodes for the common intracellular mediator of the TGF-ß superfamily pathway, which regulates numerous cellular processes, such as cell proliferation, cell differentiation, apoptosis, cell fate and migration. This study was aimed to investigate the presence of genetic variants in SMAD4 gene promoter in malignant pancreatic and colorectal tissue and to analyze their functional consequences. METHODS: The study was performed on genomic DNA isolated from malignant tissue samples obtained on surgery from 50 patients with pancreatic carcinoma and 50 patients with colorectal cancer. Screening for mutations within an 800bp-long fragment of the SMAD4 gene promoter was performed by DNA sequencing and two mononucleotide repeats, at positions -462 and -4, were found to be polymorphic in malignant tissue. The exact number of thymidines in the tracts -462T(15) and -4T(12) was determined by PCR with fluorescently labeled primers followed by capillary electrophoresis. Functional analysis of -462T(15)/-4T(12) haplotypes was performed by luciferase reporter assays. RESULTS: Haplotype -462T(14)/-4T(10) was found in 85% of pancreatic cancer tissues, but it was not present in any of colorectal cancer tissues. Statistically significant reduction (p<0.001) in activity was observed in the haplotype -462T(14)/-4T(10) in comparison with the haplotypes -462T(15)/-4T(12) and -462T(14)/-4T(11). CONCLUSION: Results of this study indicate that novel genetic variant -4T(10) in the SMAD4 gene promoter affects its activity and that element -4T(12) may play a role in transcriptional regulation of SMAD4 gene expression. Obtained results, though preliminary, also indicate that SMAD4 gene promoter haplotype -462T(14)/-4T(10) may represent a genetic marker of potential relevance for pancreatic and colorectal cancer. The findings of this study should be confirmed by further investigation in these two and other tumors, on larger number of patients and with different tumor stages. Translational research aimed at investigating potential application of mononucleotide repeats -462T(15) and -4T(12) in SMAD4 gene promoter as molecular markers in cancer may also prove useful.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Proteína Smad4/genética , Biomarcadores Tumorais/metabolismo , Eletroforese Capilar , Haplótipos , Humanos , Repetições Minissatélites , Mutação , Reação em Cadeia da Polimerase , Polimorfismo Genético , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Transcrição Gênica
14.
Arch Biochem Biophys ; 502(1): 60-7, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20599664

RESUMO

The muscle ankyrin repeat protein (MARP) family member Ankrd1/CARP is a part of the titin-mechanosensory signaling complex in the sarcomere and in response to stretch it translocates to the nucleus where it participates in the regulation of cardiac genes as a transcriptional co-repressor. Several studies have focused on its structural role in muscle, but its regulatory role is still poorly understood. To gain more insight into the regulatory function of Ankrd1/CARP we searched for transcription factors that could interact and modulate its activity. Using protein array methodology we identified the tumor suppressor protein p53 as an Ankrd1/CARP interacting partner and confirmed their interaction both in vivo and in vitro. We demonstrate a novel role for Ankrd1/CARP as a transcriptional co-activator, moderately up regulating p53 activity. Furthermore, we show that p53 operates as an upstream effector of Ankrd1/CARP, by up regulating the proximal ANKRD1 promoter. Our findings suggest that, besides acting as a transcriptional co-repressor, Ankrd1/CARP could have a stimulatory effect on gene expression in cultured skeletal muscle cells. It is probable that Ankrd1/CARP has a role in the propagation of signals initiated by myogenic regulatory factors (MRFs) during myogenesis.


Assuntos
Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Repetição de Anquirina , Sequência de Bases , Células COS , Linhagem Celular , Chlorocebus aethiops , Primers do DNA/genética , Humanos , Técnicas In Vitro , Camundongos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Análise Serial de Proteínas , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/genética
15.
J Mol Biol ; 339(2): 313-25, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15136035

RESUMO

Ankrd2 may be a link between the sarcomere and the nucleus; a similar role has recently been proposed for CARP that has a high level of structural and functional conservation with Ankrd2. Both Ankrd2 and CARP are involved in striated muscle hypertrophy. The mechanism by which muscle stretch is sensed and signals are transduced is still unknown; however, Ankrd2 and CARP could play similar roles in pathways leading to hypertrophy, the triggering mechanisms being heart pressure overload monitored by CARP and mechanical stretch in skeletal muscle monitored by Ankrd2. Recently Ankrd2 and CARP have been proposed as members of a family of muscle ankyrin repeat proteins (MARPs) that form a complex with titin, myopalladin and calpain protease p94, involved in signaling and regulation of gene expression in response to muscle stress. Here, we show that Ankrd2 is able to interact with the Z-disc protein telethonin as well as being able to interact with three transcription factors: YB-1, PML and p53. Ankrd2 binding to the ubiquitous transcription factor YB-1 can be demonstrated both in vitro and in vivo; this is not very surprising, since a similar interaction was previously described for CARP. However, the interactions with PML and p53 are unexpected new findings, with interesting implications in the Ankrd2 signaling cascade. Ankrd2 co-localizes with the transcriptional co-activator and co-repressor PML in nuclear bodies (NBs) in human myoblasts as detected by confocal immunofluorescence. Interestingly, we show that Ankrd2 not only binds the tumor suppressor protein p53 both in vitro and in vivo but also enhances the up-regulation of the p21(WAFI/CIPI) promoter by p53. Therefore, our findings strengthen the hypothesis that Ankrd2 may be involved in sensing stress signals and linking these to muscle gene regulation.


Assuntos
Núcleo Celular/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Sarcômeros/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Conectina , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Ciclinas/metabolismo , Humanos , Microscopia de Fluorescência , Fatores de Transcrição NFI , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteína da Leucemia Promielocítica , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor , Regulação para Cima , Proteína 1 de Ligação a Y-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA