RESUMO
Synthesis of high molecular weight polyesters prepared by acyclic diene metathesis (ADMET) polymerization of bis(undec-10-enoate) with isosorbide (M1), isomannide (M2), and 1,3-propanediol (M3) and the subsequent hydrogenation have been achieved by using a molybdenum-alkylidene catalyst. The resultant polymers (P1) prepared by the ADMET polymerization of M1 (in toluene at 25 °C) possessed high Mn values (Mn = 44400-49400 g/mol), and no significant differences in the Mn values and the PDI (Mw/Mn) values were observed in the samples after the hydrogenation. Both the tensile strength and the elongation at break in the hydrogenated polymers from M1 (HP1) increased upon increasing the molar mass, and the sample with an Mn value of 48200 exhibited better tensile properties (tensile strength of 39.7 MPa, elongation at break of 436%) than conventional polyethylene, polypropylene, as well as polyester containing C18 alkyl chains. The tensile properties were affected by the diol segment employed, whereas HP2 showed a similar property to HP1.
RESUMO
Acne vulgaris is characterized by excess sebum production, and apart from all-trans retinoic acid (atRA) or 13-cis retinoic acid (13-cisRA), there are few effective agents for acne therapy that directly suppresses sebaceous lipogenesis. In this study, we demonstrated that topical application of a citrus polymethoxy flavonoid, nobiletin, to hamster auricles decreased skin surface triacylglycerols (TG) level and the size of sebaceous glands along with inhibition of diacylglycerol acyltransferase (DGAT)-dependent TG synthesis and sebocyte proliferation. The inhibitory actions were similar to that observed with atRA and 13-cisRA in hamster sebocytes. The antilipogenic and antiproliferative actions of nobiletin were also reproduced in UVB (5.4 kJ/m2)-irradiated hamsters, which showed aberrant enhancement of sebum accumulation and sebaceous enlargement. Furthermore, nobiletin, but not 13-cisRA, augmented sebum excretion along with increases in intracellular cAMP level, protein kinase A (PKA) activation, and apoptosis-independent phosphatidylserine (PS) externalization in cell membrane. These phenomena were reproduced by forskolin and inhibited by a PKA inhibitor, H-89. These results provide early evidence that nobiletin is an effective candidate for acne therapy through mechanisms that include the inhibition of DGAT-dependent TG synthesis and sebocyte proliferation, and the progression of apoptosis-independent and PS-externalization-dependent sebum excretion by PKA activation.