Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Blood Cancer J ; 13(1): 143, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696829

RESUMO

Variability in the molecular response to frontline tyrosine kinase inhibitor (TKI) therapy in chronic myeloid leukemia may be partially driven by differences in the level of kinase inhibition induced. We measured in vivo BCR::ABL1 kinase inhibition (IVKI) in circulating mononuclear cells after 7 days of therapy. In 173 patients on imatinib 600 mg/day, 23% had low IVKI (<11% reduction in kinase activity from baseline); this was associated with higher rates of early molecular response (EMR) failure; lower rates of major molecular response (MMR), and MR4.5 by 36 months, compared to high IVKI patients. Low IVKI was more common (39%) in patients with large spleens (≥10 cm by palpation). Notably 55% of patients with large spleens and low IVKI experienced EMR failure whereas the EMR failure rate in patients with large spleens and high IVKI was only 12% (p = 0.014). Furthermore, patients with large spleen and low IVKI had a higher incidence of blast crisis, inferior MMR, MR4.5, and event-free survival compared to patients with large spleen and high IVKI and remaining patients. In nilotinib-treated patients (n = 73), only 4% had low IVKI. The combination of low IVKI and large spleen is associated with markedly inferior outcomes and interventions in this setting warrant further studies.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Esplenomegalia/tratamento farmacológico , Esplenomegalia/etiologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Crise Blástica
2.
Sci Rep ; 13(1): 13110, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567965

RESUMO

In Chronic Myeloid Leukemia, the transition from drug sensitive to drug resistant disease is poorly understood. Here, we used exploratory sequencing of gene transcripts to determine the mechanisms of drug resistance in a dasatinib resistant cell line model. Importantly, cell samples were collected sequentially during drug exposure and dose escalation, revealing several resistance mechanisms which fluctuated over time. BCR::ABL1 overexpression, BCR::ABL1 kinase domain mutation, and overexpression of the small molecule transporter ABCG2, were identified as dasatinib resistance mechanisms. The acquisition of mutations followed an order corresponding with the increase in selective fitness associated with each resistance mechanism. Additionally, it was demonstrated that ABCG2 overexpression confers partial ponatinib resistance. The results of this study have broad applicability and help direct effective therapeutic drug usage and dosing regimens and may be useful for clinicians to select the most efficacious therapy at the most beneficial time.


Assuntos
Proteínas de Fusão bcr-abl , Inibidores de Proteínas Quinases , Dasatinibe/farmacologia , Proteínas de Fusão bcr-abl/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Mutação
3.
Cancers (Basel) ; 15(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627047

RESUMO

Azacitidine is an approved therapy for higher-risk myelodysplastic syndrome (MDS). However, only 30-40% patients respond to azacitidine, and the responses may take up to six cycles to become evident. Delayed responses and the myelosuppressive effects of azacitidine make it challenging to predict which patients will benefit. This is further compounded by a lack of uniform prognostic tools to identify patients at risk of early treatment failure. Hence, we performed a retrospective analysis of 273 consecutive azacytidine-treated patients. The median overall survival was 16.25 months with only 9% alive at 5 years. By using pre-treatment variables incorporated into a random forest machine learning model, we successfully identified those patients unlikely to benefit from azacytidine upfront (7.99 vs. 22.8 months, p < 0.0001). This model also identified those who required significantly more hospitalizations and transfusion support. Notably, it accurately predicted survival outcomes, outperforming the existing prognostic scoring system. By integrating somatic mutations, we further refined the model and identified three distinct risk groups with significant differences in survival (5.6 vs. 10.5 vs. 43.5 months, p < 0.0001). These real-world findings emphasize the urgent need for personalized prediction tools tailored to hypomethylating agents, reducing unnecessary complications and resource utilization in MDS treatment.

4.
Blood ; 142(25): 2192-2197, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37616555

RESUMO

ABSTRACT: Patients with chronic myeloid leukemia who are eligible for treatment-free remission (TFR) may still relapse after tyrosine kinase inhibitor (TKI) cessation. There is a need for accurate predictors of outcome to enable patients with a favorable profile to proceed while avoiding futile attempts. Sensitive detection of residual disease in total leukocytes at treatment cessation is associated with relapse but is not highly discriminatory, likely because it is a composite measure of residual leukemia derived from different cell lineages, whereas only some lineages are relevant for relapse. We prospectively measured BCR::ABL1 DNA as a predictive yes/no binary test in 5 cellular fractions from 48 patients meeting conventional criteria for TKI discontinuation. The median BCR::ABL1 DNA level was higher in granulocytes and T cells, but not in other lineages, in patients who relapsed. Among the 40 patients undergoing their first TFR attempt, we defined 3 groups with differing relapse risk: granulocyte-positive group (100%), granulocyte-negative/T-cell-positive group (67%), and granulocyte-negative /T-cell-negative group (25%). These data show the critical importance of lineage-specific assessment of residual disease in the selection of patients who can attempt to achieve TFR with a high expectation of success and, concurrently, defer patients who have a high probability of relapse.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases , Recidiva , Indução de Remissão , DNA
5.
Br J Haematol ; 202(6): 1127-1136, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482935

RESUMO

The addition of interferon to tyrosine kinase inhibitors (TKIs), to improve deep molecular response (DMR) and potentially treatment-free remission (TFR) rates in chronic-phase chronic myeloid leukaemia (CP-CML) patients is under active investigation. However, the immunobiology of this combination is poorly understood. We performed a comprehensive longitudinal assessment of immunological changes in CML patients treated with nilotinib and interferon-alpha (IFN-α) within the ALLG CML11 trial (n = 12) or nilotinib alone (n = 17). We demonstrate that nilotinib+IFN transiently reduced absolute counts of natural killer (NK) cells, compared with nilotinib alone. Furthermore, CD16+ -cytolytic and CD57+ CD62L- -mature NK cells were transiently reduced during IFN therapy, without affecting NK-cell function. IFN transiently increased cytotoxic T-lymphocyte (CTL) responses to leukaemia-associated antigens (LAAs) proteinase-3, BMI-1 and PRAME; and had no effect on regulatory T cells, or myeloid-derived suppressor cells. Patients on nilotinib+IFN who achieved MR4.5 by 12 months had a significantly higher proportion of NK cells expressing NKp46, NKp30 and NKG2D compared with patients not achieving this milestone. This difference was not observed in the nilotinib-alone group. The addition of IFN to nilotinib drives an increase in NK-activating receptors, CTLs responding to LAAs and results in transient immune modulation, which may influence earlier DMR, and its effect on long-term outcomes warrants further investigation.


Assuntos
Interferon-alfa , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Dasatinibe , Interferon-alfa/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Antígenos de Neoplasias
6.
Bone Marrow Transplant ; 58(7): 769-776, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012415

RESUMO

Therapy-related myeloid neoplasms (t-MN) are aggressive myeloid neoplasms. Factors predicting post-allogeneic stem cell transplant (alloSCT) survival are not well-known. We studied the prognostic utility of factors at: t-MN diagnosis, pre-alloSCT, and post-alloSCT. Primary endpoints were 3-year overall survival (OS), relapse incidence (RI), and non-relapse mortality (NRM). Post-alloSCT OS did not differ between t-MDS and t-AML (20.1 vs. 19.6 months, P = 1), though t-MDS had a significantly higher 3-year RI compared to t-AML (45.1% vs. 26.9%, P = 0.03). In t-MDS, the presence of monosomy 5 (HR 3.63, P = 0.006) or monosomy 17 (HR 11.81, P = 0.01) pre-alloSCT were associated with higher RI. Complex karyotype was the only factor adversely influencing survival at all the timepoints. The inclusion of genetic information yielded 2 risk-categories: high-risk defined by the presence of pathogenic variants (PV) in (TP53/BCOR/IDH1/GATA2/BCORL1) and standard-risk (remainder of the patients) with 3-year post-alloSCT OS of 0% and 64.6%, respectively (P = 0.001). We concluded that while alloSCT was curative in a subset of t-MN patients, outcomes remained poor, specifically in the high-risk category. t-MDS patients, especially those with persistent disease pre-alloSCT were at increased risk of relapse. Disease-related factors at t-MN diagnosis were the most prognostic of post-alloSCT survival; utility of factors available later in the course, was incremental.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Transplante Homólogo , Estudos Retrospectivos , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Monossomia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
9.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834962

RESUMO

Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-labeled AZA (14C-AZA), gene expression, transporter pump activity with or without inhibitors, and cytotoxicity in naïve and resistant cell lines provided insight into the mechanism of AZA resistance. AML cell lines were exposed to increasing concentrations of AZA to create resistant clones. 14C-AZA IUR was significantly lower in MOLM-13- (1.65 ± 0.08 ng vs. 5.79 ± 0.18 ng; p < 0.0001) and SKM-1- (1.10 ± 0.08 vs. 5.08 ± 0.26 ng; p < 0.0001) resistant cells compared to respective parental cells. Importantly, 14C-AZA IUR progressively reduced with downregulation of SLC29A1 expression in MOLM-13- and SKM-1-resistant cells. Furthermore, nitrobenzyl mercaptopurine riboside, an SLC29A inhibitor, reduced 14C-AZA IUR in MOLM-13 (5.79 ± 0.18 vs. 2.07 ± 0.23, p < 0.0001) and SKM-1-naive cells (5.08 ± 2.59 vs. 1.39 ± 0.19, p = 0.0002) and reduced efficacy of AZA. As the expression of cellular efflux pumps such as ABCB1 and ABCG2 did not change in AZA-resistant cells, they are unlikely contribute to AZA resistance. Therefore, the current study provides a causal link between in vitro AZA resistance and downregulation of cellular influx transporter SLC29A1.


Assuntos
Azacitidina , Resistencia a Medicamentos Antineoplásicos , Transportador Equilibrativo 1 de Nucleosídeo , Leucemia Mieloide Aguda , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Transportador Equilibrativo 1 de Nucleosídeo/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
10.
Blood Adv ; 7(11): 2364-2374, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36622326

RESUMO

Dysregulation of immune-checkpoint receptors has been reported at diagnosis of chronic myeloid leukemia (CML), however, their role in the maintenance of remission after tyrosine kinase inhibitor (TKI) cessation is unclear. We assessed programmed cell death-1 (PD-1), T-cell immunoglobulin, and mucin-domain containing protein-3 (TIM-3), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), lymphocyte-activation gene-3 (LAG-3), and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) expression on T-cell subsets, regulatory T cells (T-regs), and natural killer (NK) cells at the time of TKI cessation in 44 patients (22 patients sustained treatment-free remission [TFR] and 22 experienced molecular relapse [MolR]). We confirmed our previous finding that absolute numbers of T-regs are increased in patients who experienced MolR compared with those who sustained TFR. The immune-checkpoint receptors PD-1, CTLA-4, LAG-3, and TIGIT on T or NK cells were not differentially expressed between the MolR and TFR groups. However, TIM-3 was consistently upregulated on bulk T cells (CD3+) and T-cell subsets including, CD4+ T cells, CD8+ T cells, and T-regs, in patients who relapsed in comparison with those who maintained TFR after discontinuation. Furthermore, gene expression analysis from publicly available data sets showed increased TIM-3 expression on CML stem cells compared with normal hematopoietic stem cells. These findings suggest that among the targetable immune-checkpoint molecules, TIM-3 blockade may potentially improve effector immune response in patients with CML stopping TKI, while concomitantly targeting leukemic stem cells and could be a promising therapeutic strategy for preventing relapse after cessation of TKI in patients with CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Antígeno CTLA-4/genética , Receptor de Morte Celular Programada 1 , Receptor Celular 2 do Vírus da Hepatite A/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Imunológicos , Recidiva
12.
J Mol Diagn ; 24(7): 803-822, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35550185

RESUMO

Mutation detection is increasingly used for the management of hematological malignancies. Prior whole transcriptome and whole exome sequencing studies using total RNA and DNA identified diverse mutation types in cancer-related genes associated with treatment failure in patients with chronic myeloid leukemia. Variants included single-nucleotide variants and small insertions/deletions, plus fusion transcripts and partial or whole gene deletions. The hypothesis that all of these mutation types could be detected by a single cost-effective hybridization capture next-generation sequencing method using total RNA was assessed. A method was developed that targeted 130 genes relevant for myeloid and lymphoid leukemia. Retrospective samples with 121 precharacterized variants were tested using total RNA and/or DNA. Concordance of detection of precharacterized variants using RNA or DNA was 96%, whereas the enhanced sensitivity identified additional variants. Comparison between 24 matched DNA and RNA samples demonstrated 95.3% of 170 variants detectable using DNA were detected using RNA, including all but one variant predicted to activate nonsense-mediated decay. RNA identified an additional 10 variants, including fusion transcripts. Furthermore, the true effect of splice variants on RNA splicing was only evident using RNA. In conclusion, capture sequencing using total RNA alone is suitable for detecting a range of variants relevant in chronic myeloid leukemia and may be more broadly applied to other hematological malignancies where diverse variant types define risk groups.


Assuntos
Neoplasias Hematológicas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , RNA , Estudos Retrospectivos
13.
Am J Hematol ; 97(8): 1013-1022, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35560061

RESUMO

Therapy-related myeloid neoplasms (t-MN) are aggressive malignancies in need of effective therapies. The BCL-2 inhibitor venetoclax represents a paradigm shift in the treatment of acute myeloid leukemia. However, the effectiveness of venetoclax has not been studied in a large cohort of t-MN. We retrospectively analyzed 378 t-MN patients, of which 96 (25.4%, 47 therapy-related acute myeloid leukemia, 1 therapy-related chronic myelomonocytic leukemia, 48 therapy-related myelodysplastic syndrome) received venetoclax. Median interval from t-MN to venetoclax initiation was 2.9 (Interquartile range [IQR] 0.7-12) months, and patients received a median of 3 (IQR 1-4) cycles. The composite complete remission (CRc) rate, median progression-free survival (PFS), and overall survival (OS) were 39.1%, 4.9 months, and 7 months, respectively. The upfront use of venetoclax and achieving CRc were associated with improved survival, whereas the presence of Chromosome 7 abnormalities was associated with an inferior survival. Neither the TP53-status nor the percent bone marrow blast predicted the likelihood of CRc or survival. Paired genetic analysis performed at venetoclax initiation and failure did not show the evidence of the selection of the TP53-mutated clone. In a propensity-matched analysis, the use of venetoclax-based regimen as the first-line therapy was associated with a superior survival compared to hypomethylating agent (HMA)-based first-line therapy (9.4 vs. 6.1 months, p = .01). We conclude that the upfront use of venetoclax with HMA improved survival, though PFS and OS remain poor. As the phenotype at diagnosis or the percent blasts did not predict outcomes, venetoclax should be studied in all t-MN phenotypes.


Assuntos
Leucemia Mieloide Aguda , Segunda Neoplasia Primária , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Estudos Retrospectivos , Sulfonamidas/efeitos adversos
14.
Front Cell Dev Biol ; 9: 655201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996816

RESUMO

Polycomb group (PcG) of proteins are a group of highly conserved epigenetic regulators involved in many biological functions, such as embryonic development, cell proliferation, and adult stem cell determination. PHD finger protein 19 (PHF19) is an associated factor of Polycomb repressor complex 2 (PRC2), often upregulated in human cancers. In particular, myeloid leukemia cell lines show increased levels of PHF19, yet little is known about its function. Here, we have characterized the role of PHF19 in myeloid leukemia cells. We demonstrated that PHF19 depletion decreases cell proliferation and promotes chronic myeloid leukemia (CML) differentiation. Mechanistically, we have shown how PHF19 regulates the proliferation of CML through a direct regulation of the cell cycle inhibitor p21. Furthermore, we observed that MTF2, a PHF19 homolog, partially compensates for PHF19 depletion in a subset of target genes, instructing specific erythroid differentiation. Taken together, our results show that PHF19 is a key transcriptional regulator for cell fate determination and could be a potential therapeutic target for myeloid leukemia treatment.

15.
Front Genet ; 11: 814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849813

RESUMO

Hepatocellular carcinoma (HCC) accounts for approximately 85-90% of all liver cancer cases and has poor relapse-free survival. There are many gene expression studies that have been performed to elucidate the genetic landscape and driver pathways leading to HCC. However, existing studies have been limited by the sample size and thus the pathogenesis of HCC is still unclear. In this study, we performed an integrated characterization using four independent datasets including 320 HCC samples and 270 normal liver tissues to identify the candidate genes and pathways in the progression of HCC. A total of 89 consistent differentially expression genes (DEGs) were identified. Gene-set enrichment analysis revealed that these genes were significantly enriched for cellular response to zinc ion in biological process group, collagen trimer in the cellular component group, extracellular matrix (ECM) structural constituent conferring tensile strength in the molecular function group, protein digestion and absorption, mineral absorption and ECM-receptor interaction. Network system biology based on the protein-protein interaction (PPI) network was also performed to identify the most connected and important genes based on our DEGs. The top five hub genes including osteopontin (SPP1), Collagen alpha-2(I) chain (COL1A2), Insulin-like growth factor I (IGF1), lipoprotein A (LPA), and Galectin-3 (LGALS3) were identified. Western blot and immunohistochemistry analysis were employed to verify the differential protein expression of hub genes in HCC patients. More importantly, we identified that these five hub genes were significantly associated with poor disease-free survival and overall survival. In summary, we have identified a potential clinical significance of these genes as prognostic biomarkers for HCC patients who would benefit from experimental approaches to obtain optimal outcome.

16.
Br J Haematol ; 191(3): 433-441, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32352166

RESUMO

There is currently no biomarker that reliably predicts treatment-free remission (TFR) in chronic myeloid leukaemia (CML). We characterised effector and suppressor immune responses at the time of tyrosine kinase inhibitor (TKI) cessation in patients from the CML8 and CML10 clinical studies. Natural killer (NK) cells with increased expression of activating NK receptors were higher in patients who achieved TFR. There was no difference in the proportion of CD4+ or CD8+ T cells. Furthermore, we found that FoxP3+ regulatory T cells (T reg) and monocytic myeloid-derived suppressor cells (Mo-MDSCs) were concomitantly decreased in TFR patients, suggesting that the effector and suppressor arms of the immune system work in concert to mediate TFR. A discovery cohort (CML10) was used to generate a predictive model, using logistic regression. Patients classified into the high-risk group were more likely to relapse when compared with the low-risk group (HR 7·4, 95% CI 2·9-19·1). The model was successfully validated on the independent CML8 cohort (HR 8·3, 95% CI 2·2-31·3). Effective prediction of TFR success may be obtained with an effector-suppressor score, calculated using absolute NK cell, T reg, and Mo-MDSC counts, at TKI cessation, reflecting the contribution of both immune suppressors and effectors in the immunobiology underlying successful TFR.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/mortalidade , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/efeitos dos fármacos , Prognóstico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Células Matadoras Naturais/genética , Receptores de Células Matadoras Naturais/metabolismo , Recidiva , Indução de Remissão , Resultado do Tratamento
17.
Leukemia ; 34(4): 1052-1061, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31768016

RESUMO

Approximately half of patients with chronic myeloid leukemia (CML) in sustained deep molecular response who discontinue tyrosine kinase inhibitors (TKIs) remain in treatment-free remission (TFR). Some of these patients have measurable residual disease (MRD) by BCR-ABL1 mRNA testing, and most have detectable BCR-ABL1 DNA by highly sensitive methods. We used fluorescence-activated cell sorting and BCR-ABL1 DNA PCR to investigate the lineage of residual CML cells in TFR. Twenty patients in TFR for >1 year provided blood for sorting into granulocytes, monocytes, B cells, T cells, and NK cells. MRD was identified predominantly in the lymphoid compartment and never in granulocytes. B cells were more often BCR-ABL1 positive than T cells (18 vs 11/20 patients) and at higher levels (median 10-4.9 vs 10-5.7; P = 0.014). In 13 CML patients studied at diagnosis lymphocytes expressing BCR-ABL1 mRNA comprised a small proportion of total leukocytes. These data improve our understanding of TFR biology, since it is now clear that MRD in the blood of TFR patients need not imply the persistence of multipotent CML cells. Lineage-specific assessment of MRD could be explored as a means to improve the prediction of TFR.


Assuntos
Linhagem da Célula , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Subpopulações de Linfócitos/imunologia , Neoplasia Residual/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/genética , Neoplasia Residual/patologia , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Indução de Remissão
18.
Blood Adv ; 3(10): 1610-1621, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31126916

RESUMO

In chronic-phase chronic myeloid leukemia (CP-CML) patients treated with frontline imatinib, failure to achieve early molecular response (EMR; EMR failure: BCR-ABL1 >10% on the international scale at 3 months) is predictive of inferior outcomes. Identifying patients at high-risk of EMR failure at diagnosis provides an opportunity to intensify frontline therapy and potentially avoid EMR failure. We studied blood samples from 96 CP-CML patients at diagnosis and identified 365 genes that were aberrantly expressed in 13 patients who subsequently failed to achieve EMR, with a gene signature significantly enriched for stem cell phenotype (eg, Myc, ß-catenin, Hoxa9/Meis1), cell cycle, and reduced immune response pathways. We selected a 17-gene panel to predict EMR failure and validated this signature on an independent patient cohort. Patients classified as high risk with our gene expression signature (HR-GES) exhibited significantly higher rates of EMR failure compared with low-risk (LR-GES) patients (78% vs 5%; P < .0001), with an overall accuracy of 93%. Furthermore, HR-GES patients who received frontline nilotinib had a relatively low rate of EMR failure (10%). However, HR-GES patients still had inferior deep molecular response achievement rate by 24 months compared with LR-GES patients. This novel multigene signature may be useful for selecting patients at high risk of EMR failure on standard therapy who may benefit from trials of more potent kinase inhibitors or other experimental approaches.


Assuntos
Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Transcriptoma/fisiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Resultado do Tratamento , Adulto Jovem
19.
Leukemia ; 32(12): 2572-2579, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315232

RESUMO

Following the achievement of deep molecular response on tyrosine kinase inhibitors (TKIs), approximately half of patients with chronic myeloid leukemia (CML) can discontinue TKI and remain in treatment-free remission (TFR). The ALLG CML8 study enrolled 40 imatinib-treated patients with undetectable BCR-ABL1 mRNA (approximately MR4.5). Molecular relapse was defined as detectable BCR-ABL1 on two consecutive tests or any single value >0.1%. With a median follow-up of 8.6 years (range 5.7-11.2 years), 18 patients remain in continuous TFR (45.0%; 95% confidence interval 31.9-63.4%). The latest relapse detected was 27 months after stopping imatinib. No patient progressed to advanced phase. Twenty-two patients met criteria for imatinib re-treatment and all regained undetectable molecular response. Nine patients in long-term TFR were monitored by highly sensitive individualized BCR-ABL1 DNA PCR in a sufficient number of samples to enable more precise quantification of residual leukemia. BCR-ABL1 DNA decreased from a median of MR5.0 in the first year of TFR to MR6.1 in the sixth year of TFR. Our results support the long-term safety and remarkable stability of response after imatinib discontinuation in appropriately selected CML patients. Serial high sensitivity testing provides a new and unexpected finding of gradually reducing CML cells in patients in long-term TFR.


Assuntos
Antineoplásicos/uso terapêutico , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/metabolismo , Indução de Remissão , Resultado do Tratamento
20.
Br J Cancer ; 118(7): 1000-1004, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531323

RESUMO

BACKGROUND: Zinc-finger protein 384 (ZNF384) fusions are an emerging subtype of precursor B-cell acute lymphoblastic leukaemia (pre-B-ALL) and here we further characterised their prevalence, survival outcomes and transcriptome. METHODS: Bone marrow mononuclear cells from 274 BCR-ABL1-negative pre-B-ALL patients were immunophenotyped and transcriptome molecularly characterised. Transcriptomic data was analysed by principal component analysis and gene-set enrichment analysis to identify gene and pathway expression changes. RESULTS: We exclusively detect E1A-associated protein p300 (EP300)-ZNF384 in 5.7% of BCR-ABL1-negative adolescent/young adult (AYA)/adult pre-B-ALL patients. EP300-ZNF384 patients do not appear to be a high-risk subgroup. Transcriptomic analysis revealed that EP300-ZNF384 samples have a distinct gene expression profile that results in the up-regulation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) and cell adhesion pathways and down-regulation of cell cycle and DNA repair pathways. CONCLUSIONS: Importantly, this report contributes to a better overview of the incidence of EP300-ZNF384 patients and show that they have a distinct gene signature with concurrent up-regulation of JAK-STAT pathway, reduced expression of B-cell regulators and reduced DNA repair capacity.


Assuntos
Proteína p300 Associada a E1A/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transativadores/genética , Transcriptoma , Adolescente , Adulto , Criança , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Frequência do Gene , Genes abl/genética , Humanos , Janus Quinases/metabolismo , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Recidiva , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Análise de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA