Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Surg Oncol ; 31(7): 4381-4392, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710911

RESUMO

BACKGROUND: Targeted approaches such as targeted axillary dissection (TAD) or sentinel lymph node biopsy (SLNB) showed false-negative rates of < 10% compared with axillary lymph node dissection (ALND) in patients with nodal-positive breast cancer undergoing neoadjuvant systemic treatment (NAST). We aimed to evaluate real-world oncologic outcomes for different axillary staging techniques. METHODS: We identified nodal-positive breast cancer patients undergoing NAST from 2016 to 2021 from the state cancer registry of Baden-Wuerttemberg, Germany. Invasive disease-free survival (iDFS) was assessed using Kaplan-Meier statistics and multivariate Cox regression models (adjusted for age, ypN stage, ypT stage, and tumor biologic subtype). RESULTS: A total of 2698 patients with a median follow-up of 24.7 months were identified: 2204 underwent ALND, 460 underwent SLNB (255 with ≥ 3 sentinel lymph nodes [SLNs] removed, 205 with 1-2 SLNs removed), and 34 underwent TAD. iDFS 3 years after surgery was 69.7% (ALND), 76.6% (SLNB with ≥ 3 SLNs removed), 76.7% (SLNB with < 3 SLNs removed), and 78.7% (TAD). Multivariate Cox regression analysis showed no significant influence of different axillary staging techniques on iDFS (hazard ratio [HR] for SLNB with < 3 SLNs removed 0.96, 95% confidence interval [CI] 0.62-1.50; HR for SLNB with ≥ 3 SLNs removed 0.86, 95% CI 0.56-1.3; HR for TAD 0.23, 95% CI 0.03-1.64; ALND reference), and for ypN+ (HR 1.92, 95% CI 1.49-2.49), triple-negative breast cancer (HR 2.35, 95% CI 1.80-3.06), and ypT3-4 (HR 2.93, 95% CI 2.02-4.24). CONCLUSION: These real-world data provide evidence that patient selection for de-escalated axillary surgery for patients with nodal-positive breast cancer undergoing NAST was successfully adopted and no early alarm signals of iDFS detriment were detected.


Assuntos
Axila , Neoplasias da Mama , Excisão de Linfonodo , Terapia Neoadjuvante , Estadiamento de Neoplasias , Sistema de Registros , Biópsia de Linfonodo Sentinela , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Pessoa de Meia-Idade , Idoso , Seguimentos , Taxa de Sobrevida , Adulto , Prognóstico , Linfonodos/patologia , Linfonodos/cirurgia , Metástase Linfática
2.
J Chem Inf Model ; 63(15): 4691-4707, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37532679

RESUMO

Human ecto-5'-nucleotidase (h-ecto-5'-NT, CD73) is a homodimeric Zn2+-binding metallophosphoesterase that hydrolyzes adenosine 5'-monophosphate (5'-AMP) to adenosine and phosphate. h-Ecto-5'-NT is a key enzyme in purinergic signaling pathways and has been recognized as a promising biological target for several diseases, including cancer and inflammatory, infectious, and autoimmune diseases. Despite its importance as a biological target, little is known about h-ecto-5'-NT dynamics, which poses a considerable challenge to the design of inhibitors of this target enzyme. Here, to explore h-ecto-5'-NT flexibility, all-atom unbiased molecular dynamics (MD) simulations were performed. Remarkable differences in the dynamics of the open (catalytically inactive) and closed (catalytically active) conformations of the apo-h-ecto-5'-NT were observed during the simulations, and the nucleotide analogue inhibitor AMPCP was shown to stabilize the protein structure in the closed conformation. Our results suggest that the large and complex domain motion that enables the h-ecto-5'-NT open/closed conformational switch is slow, and therefore, it could not be completely captured within the time scale of our simulations. Nonetheless, we were able to explore the faster dynamics of the h-ecto-5'-NT substrate binding site, which is mainly located at the C-terminal domain and well conserved among the protein's open and closed conformations. Using the TRAPP ("Transient Pockets in Proteins") approach, we identified transient subpockets close to the substrate binding site. Finally, conformational states of the substrate binding site with higher druggability scores than the crystal structure were identified. In summary, our study provides valuable insights into h-ecto-5'-NT structural flexibility, which can guide the structure-based design of novel h-ecto-5'-NT inhibitors.


Assuntos
5'-Nucleotidase , Simulação de Dinâmica Molecular , Humanos , Monofosfato de Adenosina/metabolismo , Adenosina/farmacologia , Sítios de Ligação
3.
J Chem Theory Comput ; 12(8): 4100-13, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27399277

RESUMO

Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Quinases da Família src/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Algoritmos , Sítios de Ligação , Proteínas de Choque Térmico HSP90/química , Interleucina-2/química , Interleucina-2/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Tempo , Quinases da Família src/química
4.
ACS Nano ; 6(11): 9863-78, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23033917

RESUMO

Protein-nanoparticle associations have important applications in nanoscience and nanotechnology such as targeted drug delivery and theranostics. However, the mechanisms by which proteins recognize nanoparticles and the determinants of specificity are still poorly understood at the microscopic level. Gold is a promising material in nanoparticles for nanobiotechnology applications because of the ease of its functionalization and its tunable optical properties. Ubiquitin is a small, cysteine-free protein (ubiquitous in eukaryotes) whose binding to gold nanoparticles has been characterized recently by nuclear magnetic resonance (NMR). To reveal the molecular basis of these protein-nanoparticle interactions, we performed simulations at multiple levels (ab initio quantum mechanics, classical molecular dynamics and Brownian dynamics) and compared the results with experimental data (circular dichroism and NMR). The results provide a model of the ensemble of structures constituting the ubiquitin-gold surface complex, and insights into the driving forces for the binding of ubiquitin to gold nanoparticles, the role of nanoparticle surfactants (citrate) in the association process, and the origin of the perturbations in the NMR chemical shifts.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Químicos , Simulação de Dinâmica Molecular , Ubiquitina/química , Ubiquitina/ultraestrutura , Adsorção , Sítios de Ligação , Simulação por Computador , Teste de Materiais , Ligação Proteica , Propriedades de Superfície
5.
Chemistry ; 17(4): 1327-36, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21243701

RESUMO

Interactions of peptides and proteins with inorganic surfaces are important to both natural and artificial systems; however, a detailed understanding of such interactions is lacking. In this study, we applied new approaches to quantitatively measure the binding of amino acids and proteins to gold surfaces. Real-time surface plasmon resonance (SPR) measurements showed that TEM1-ß-lactamase inhibitor protein (BLIP) interacts only weakly with Au nanoparticles (NPs). However, fusion of three histidine residues to BLIP (3H-BLIP) resulted in a significant increase in the binding to the Au NPs, which further increased when the histidine tail was extended to six histidines (6H-BLIP). Further increasing the number of His residues had no effect on the binding. A parallel study using continuous (111)-textured Au surfaces and single-crystalline, (111)-oriented, Au islands by ellipsometry, FTIR, and localized surface plasmon resonance (LSPR) spectroscopy further confirmed the results, validating the broad applicability of Au NPs as model surfaces. Evaluating the binding of all other natural amino acid homotripeptides fused to BLIP (except Cys and Pro) showed that aromatic and positively-charged residues bind preferentially to Au with respect to small aliphatic and negatively charged residues, and that the rate of association is related to the potency of binding. The binding of all fusions was irreversible. These findings were substantiated by SPR measurements of synthesized, free, soluble tripeptides using Au-NP-modified SPR chips. Here, however, the binding was reversible allowing for determination of binding affinities that correlate with the binding potencies of the related BLIP fusions. Competition assays performed between 3H-BLIP and the histidine tripeptide (3 His) suggest that Au binding residues promote the adsorption of proteins on the surface, and by this facilitate the irreversible interaction of the polypeptide chain with Au. The binding of amino acids to Au was simulated by using a continuum solvent model, showing agreement with the experimental values. These results, together with the observed binding potencies and kinetics of the BLIP fusions and free peptides, suggest a binding mechanism that is markedly different from biological protein-protein interactions.


Assuntos
Ouro/química , Metaloproteínas/química , Peptídeos/química , Adsorção , Cinética , Metaloproteínas/metabolismo , Nanopartículas/química , Peptídeos/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície
6.
J Phys Chem B ; 109(38): 18070-80, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16853321

RESUMO

Configuration interaction calculations of the ground and excited states of the H2CO molecule adsorbed on the Ag(111) surface have been carried out to study the photoinduced dissociation process leading to polymerization of formaldehyde. The metal-adsorbate system has been described by the embedded cluster and multireference configuration interaction methods. The pi electron-attachment H2CO- and n-pi* internally excited H2CO* states have been considered as possible intermediates. The calculations have shown that H2CO* is only very weakly bound on Ag(111), and thus that the dissociation of adsorbed formaldehyde due to internal excitation is unlikely. By contrast, the H2CO- anion is strongly bound to Ag(111) and gains additional vibrational energy along the C-O stretch coordinate via Franck-Condon excitation from the neutral molecule. Computed energy variations of adsorbed H2CO and H2CO- at different key geometries along the pathway for C-O bond cleavage make evident, however, that complete dissociation is very difficult to attain on the potential energy surface of either of these states. Instead, reneutralization of the vibrationally excited anion by electron transfer back to the substrate is the most promising means of breaking the C-O bond, with subsequent formation of the coadsorbed O and CH2 fragments. Furthermore, it has been demonstrated that the most stable state for both dissociation fragments on Ag(111) is a closed-shell singlet, with binding energies relative to the gas-phase products of approximately 3.2 and approximately 1.3 eV for O and CH2, respectively. Further details of the reaction mechanism for the photoinduced C-O bond cleavage of H2CO on the Ag(111) surface are also given.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA