Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vet Intern Med ; 38(3): 1425-1436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38613431

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) is increasingly used for gastrointestinal and extra-gastrointestinal diseases in veterinary medicine. However, its effects on immune responses and possible adverse events have not been systematically investigated. HYPOTHESIS/OBJECTIVES: Determine the short-term safety profile and changes in the peripheral immune system after a single FMT administration in healthy dogs. ANIMALS: Ten client-owned, clinically healthy dogs as FMT recipients, and 2 client-owned clinically healthy dogs as FMT donors. METHODS: Prospective non-randomized clinical trial. A single rectal enema of 5 g/kg was given to clinically healthy canine recipients. During the 28 days after FMT administration, owners self-reported adverse events and fecal scores. On Days 0 (baseline), 1, 4, 10, and 28 after FMT, fecal and blood samples were collected. The canine fecal dysbiosis index (DI) was calculated using qPCR. RESULTS: No significant changes were found in the following variables: CBC, serum biochemistry, C-reactive protein, serum cytokines (interleukins [IL]-2, -6, -8, tumor necrosis factor [TNF]-α), peripheral leukocytes (B cells, T cells, cluster of differentiation [CD]4+ T cells, CD8+ T cells, T regulatory cells), and the canine DI. Mild vomiting (n = 3), diarrhea (n = 4), decreased activity (n = 2), and inappetence (n = 1) were reported, and resolved without intervention. CONCLUSIONS AND CLINICAL IMPORTANCE: Fecal microbiota transplantation did not significantly alter the evaluated variables and recipients experienced minimal adverse events associated with FMT administration. Fecal microbiota transplantation was not associated with serious adverse events, changes in peripheral immunologic variables, or the canine DI in the short-term.


Assuntos
Transplante de Microbiota Fecal , Animais , Cães , Transplante de Microbiota Fecal/veterinária , Transplante de Microbiota Fecal/efeitos adversos , Feminino , Masculino , Fezes/microbiologia , Estudos Prospectivos , Citocinas/sangue , Citocinas/metabolismo , Disbiose/veterinária , Disbiose/terapia , Microbioma Gastrointestinal
2.
Front Vet Sci ; 10: 1279881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076567

RESUMO

Mast cell tumor (MCT) is a common skin cancer in dogs that has a wide range of clinical behaviors. The purpose of this study was to develop a novel multicolor flow cytometry (FC) panel that will enable the quantification of candidate prognostic markers (Ki-67 and pKIT) in fine needle aspirate (FNA) samples prior to surgical removal of the tumors. FNA of canine MCTs and the NI-1 cell line were utilized to develop a FC panel that includes a viability dye (FVS620, BD Biosciences; 7-AAD, Invitrogen) and the following primary conjugated antibodies: CD117-PE (ACK45, BD Biosciences), pKIT-A647 (polyclonal bs-3242R, BIOSS) and Ki-67-FITC (20Raj1, eBioscience; MIB-1, DAKO). A total of nine FNA samples of canine MCTs were collected, seven out which produced sufficient cells for FC analysis. The Ki-67 antibody clone 20Raj1 produced a positive signal when applied to blood leukocytes but failed to provide robust labeling of neoplastic mast cells. The Ki-67 antibody clone MIB-1 delivered a superior staining quality in both the NI-1 cells and primary MCT cells. CD117-PE signal was adequate post fixation and permeabilization and in the combination of 7-AAD. pKIT produced non-specific staining and was not suitable for this multicolor FC panel. In conclusion, FNA samples of canine MCTs can often yield adequate cell numbers for FC analysis, and a multicolor FC panel was developed that can detect Ki-67 in canine mast cells. This would permit further studies into the potential use of this panel for canine cutaneous and subcutaneous MCT prognostication purposes.

3.
J Avian Med Surg ; 36(3): 250-261, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36468802

RESUMO

Although cockatiels are among the most common avian species maintained as companion animals in the United States, information on standard hematologic reference values for this species is limited. The objectives of this study were to establish hematologic reference intervals (RI) for cockatiels, compare methods using both the Natt-Herrick technique (NHT) and the smear-based estimation technique (SBT), explore age and sex differences in the hematologic findings for this species, and produce the first cockatiel RI for fibrinogen concentration and thrombocyte estimate. Healthy cockatiels (60 males and 60 females, 2-11 years old) from a research colony were included in this study. Blood samples were placed in dipotassium ethylenediaminetetraacetic acid tubes, and erythrocyte counts and thrombocyte estimates were determined via automated analyzer (ADVIA 120) and SBT, respectively. Moreover, leukocyte concentrations were determined using both NHT and SBT to compare these common methods for measuring a complete blood count in cockatiels. Data were analyzed for outliers, distributions, descriptive statistics, and RI via Reference Value Adviser, a set of macroinstructions for Microsoft Excel (Microsoft, Redmond, WA, USA). Lymphocytes were the predominant leukocyte across both methods. According to the NHT, females had significantly higher concentrations of total leukocytes, heterophils, bands, lymphocytes, basophils, and total plasma protein compared with males. Significant inverse polynomial relationships were noted between total leukocyte count and age and lymphocyte counts and age for NHT. Total leukocyte count produced via NHT and SBT were compared using Passing-Bablok and Bland-Altman plots, and no significant constant or proportional biases were found. However, these methods showed wide limits of agreement. While the RI were interchangeable between methods from a clinical standpoint, the same method should be used to assess changes in an individual. The reported RI are uniquely robust given the sample size, balanced sex and age distributions, inclusion criteria, and control over sample collection.


Assuntos
Cacatuas , Papagaios , Feminino , Masculino , Animais , Valores de Referência , Leucócitos , Contagem de Leucócitos/veterinária
4.
Sci Rep ; 12(1): 14578, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028741

RESUMO

The small intestinal mucosa constitutes a physical barrier separating the gut lumen from sterile internal tissues. Junctional complexes between cells regulate transport across the barrier, preventing water loss and the entry of noxious molecules or pathogens. Inflammatory diseases in cattle disrupt this barrier; nonetheless, mechanisms of barrier disruption in cattle are poorly understood. We investigated the direct effects of three inflammatory cytokines, TNFα, IFNγ, and IL-18, on the bovine intestinal barrier utilizing intestinal organoids. Flux of fluorescein isothiocyanate (FITC)-labeled dextran was used to investigate barrier permeability. Immunocytochemistry and transmission electron microscopy were used to investigate junctional morphology, specifically tortuosity and length/width, respectively. Immunocytochemistry and flow cytometry was used to investigate cellular turnover via proliferation and apoptosis. Our study shows that 24-h cytokine treatment with TNFα or IFNγ significantly increased dextran permeability and tight junctional tortuosity, and reduced cellular proliferation. TNFα reduced the percentage of G2/M phase cells, and IFNγ treatment increased cell apoptotic rate. IL-18 did not directly induce significant changes to barrier permeability or cellular turnover. Our study concludes that the inflammatory cytokines, TNFα and IFNγ, directly induce intestinal epithelial barrier dysfunction and alter the tight junctional morphology and rate of cellular turnover in bovine intestinal epithelial cells.


Assuntos
Citocinas , Enteropatias , Animais , Bovinos , Dextranos , Células Epiteliais , Interleucina-18 , Mucosa Intestinal , Permeabilidade , Junções Íntimas , Fator de Necrose Tumoral alfa
5.
Stem Cell Rev Rep ; 18(1): 214-227, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347271

RESUMO

Multipotent stromal cells (MSCs) are widely utilized in therapy for their immunomodulatory properties, but their usage in infectious viral diseases is less explored. This review aimed to collate the current novel use of MSCs in virus-associated conditions, including MSC's susceptibility to virus infection, antiviral properties of MSCs and their effects on cell-based immune response and implementation of MSC therapy in animal models and human clinical trials of viral diseases. Recent discoveries shed lights on MSC's capability in suppressing viral replication and augmenting clearance through enhancement of antiviral immunity. MSC therapy may maintain a crucial balance between aiding pathogen clearance and suppressing hyperactive immune response.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Antivirais , Imunomodulação , Células Estromais
6.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34014838

RESUMO

Although antiretroviral therapy suppresses HIV replication, it does not eliminate viral reservoirs or restore damaged lymphoid tissue, posing obstacles to HIV eradication. Using the SIV model of AIDS, we investigated the effect of mesenchymal stem/stromal cell (MSC) infusions on gut mucosal recovery, antiviral immunity, and viral suppression and determined associated molecular/metabolic signatures. MSC administration to SIV-infected macaques resulted in viral reduction and heightened virus-specific responses. Marked clearance of SIV-positive cells from gut mucosal effector sites was correlated with robust regeneration of germinal centers, restoration of follicular B cells and T follicular helper (Tfh) cells, and enhanced antigen presentation by viral trapping within the follicular DC network. Gut transcriptomic analyses showed increased antiviral response mediated by pathways of type I/II IFN signaling, viral restriction factors, innate immunity, and B cell proliferation and provided the molecular signature underlying enhanced host immunity. Metabolic analysis revealed strong correlations between B and Tfh cell activation, anti-SIV antibodies, and IL-7 expression with enriched retinol metabolism, which facilitates gut homing of antigen-activated lymphocytes. We identified potentially new MSC functions in modulating antiviral immunity for enhanced viral clearance predominantly through type I/II IFN signaling and B cell signature, providing a road map for multipronged HIV eradication strategies.


Assuntos
Centro Germinativo , Mucosa Intestinal/imunologia , Células-Tronco Mesenquimais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Citocinas/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral/imunologia , Macaca mulatta , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia
8.
Stem Cells Transl Med ; 8(5): 450-455, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30719867

RESUMO

Diabetes mellitus (DM) is a common spontaneous endocrine disorder in dogs, which is defined by persistent hyperglycemia and insulin deficiency. Like type 1 diabetes (T1D) in people, canine DM is a complex and multifactorial disease in which genomic and epigenomic factors interact with environmental cues to induce pancreatic ß-cell loss and insulin deficiency, although the pathogenesis of canine DM is poorly defined and the role of autoimmunity is further controversial. Both diseases are incurable and require life-long exogenous insulin therapy to maintain glucose homeostasis. Human pancreatic islet physiology, size, and cellular composition is further mirrored by canine islets. Although pancreatic or isolated islets transplantation are the only clinically validated methods to achieve long-term normoglycemia and insulin independence, their availability does not meet the clinical need; they target a small portion of patients and have significant potential adverse effects. Therefore, providing a new source for ß-cell replacement is an unmet need. Naturally occurring DM in pet dogs, as a translational platform, is an untapped resource for various regenerative medicine applications that may offer some unique advantages given dogs' large size, longevity, heterogenic genetic background, similarity to human physiology and pathology, and long-term clinical management. In this review, we outline different strategies for curative approaches, animal models used, and consider the value of canine DM as a translational animal/disease model for T1D in people. Stem Cells Translational Medicine 2019;8:450-455.


Assuntos
Diabetes Mellitus Experimental/terapia , Medicina Regenerativa/métodos , Animais , Modelos Animais de Doenças , Cães , Humanos
9.
Stem Cells Transl Med ; 7(1): 98-108, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29063737

RESUMO

Distal extremity wounds are a significant clinical problem in horses and humans and may benefit from mesenchymal stem cell (MSC) therapy. This study evaluated the effects of direct wound treatment with allogeneic stem cells, in terms of gross, histologic, and transcriptional features of healing. Three full-thickness cutaneous wounds were created on each distal forelimb in six healthy horses, for a total of six wounds per horse. Umbilical cord-blood derived equine MSCs were applied to each wound 1 day after wound creation, in one of four forms: (a) normoxic- or (b) hypoxic-preconditioned cells injected into wound margins, or (c) normoxic- or (d) hypoxic-preconditioned cells embedded in an autologous fibrin gel and applied topically to the wound bed. Controls were one blank (saline) injected wound and one blank fibrin gel-treated wound per horse. Data were collected weekly for 6 weeks and included wound surface area, thermography, gene expression, and histologic scoring. Results indicated that MSC treatment by either delivery method was safe and improved histologic outcomes and wound area. Hypoxic-preconditioning did not offer an advantage. MSC treatment by injection resulted in statistically significant increases in transforming growth factor beta and cyclooxygenase-2 expression at week 1. Histologically, significantly more MSC-treated wounds were categorized as pro-healing than pro-inflammatory. Wound area was significantly affected by treatment: MSC-injected wounds were consistently smaller than gel-treated or control wounds. In conclusion, MSC therapy shows promise for distal extremity wounds in horses, particularly when applied by direct injection into the wound margin. Stem Cells Translational Medicine 2018;7:98-108.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pele/lesões , Cicatrização/fisiologia , Ferimentos e Lesões/terapia , Animais , Hipóxia Celular , Ciclo-Oxigenase 2/análise , Feminino , Sangue Fetal/citologia , Cavalos , Masculino , Fator de Crescimento Transformador beta/análise
10.
Stem Cell Res Ther ; 8(1): 69, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320483

RESUMO

BACKGROUND: Adipose-derived mesenchymal stem cells (ASCs) are a promising cell therapy to treat inflammatory and immune-mediated diseases. Development of appropriate pre-clinical animal models is critical to determine safety and attain early efficacy data for the most promising therapeutic candidates. Naturally occurring diseases in cats already serve as valuable models to inform human clinical trials in oncologic, cardiovascular, and genetic diseases. The objective of this study was to complete a comprehensive side-by-side comparison of human and feline ASCs, with an emphasis on their immunomodulatory capacity and transcriptome. METHODS: Human and feline ASCs were evaluated for phenotype, immunomodulatory profile, and transcriptome. Additionally, transwells were used to determine the role of cell-cell contact in ASC-mediated inhibition of lymphocyte proliferation in both humans and cats. RESULTS: Similar to human ASCs, feline ASCs were highly proliferative at low passages and fit the minimal criteria of multipotent stem cells including a compatible surface protein phenotype, osteogenic capacity, and normal karyotype. Like ASCs from all species, feline ASCs inhibited mitogen-activated lymphocyte proliferation in vitro, with or without direct ASC-lymphocyte contact. Feline ASCs mimic human ASCs in their mediator secretion pattern, including prostaglandin E2, indoleamine 2,3 dioxygenase, transforming growth factor beta, and interleukin-6, all augmented by interferon gamma secretion by lymphocytes. The transcriptome of three unactivated feline ASC lines were highly similar. Functional analysis of the most highly expressed genes highlighted processes including: 1) the regulation of apoptosis; 2) cell adhesion; 3) response to oxidative stress; and 4) regulation of cell differentiation. Finally, feline ASCs had a similar gene expression profile to noninduced human ASCs. CONCLUSIONS: Findings suggest that feline ASCs modulate lymphocyte proliferation using soluble mediators that mirror the human ASC secretion pattern. Uninduced feline ASCs have similar gene expression profiles to uninduced human ASCs, as revealed by transcriptome analysis. These data will help inform clinical trials using cats with naturally occurring diseases as surrogate models for human clinical trials in the regenerative medicine arena.


Assuntos
Tecido Adiposo/citologia , Imunomodulação/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transcriptoma/genética , Animais , Gatos , Proliferação de Células/efeitos dos fármacos , Forma Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Mitógenos/farmacologia , Fenótipo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Transcriptoma/efeitos dos fármacos
11.
Vet Immunol Immunopathol ; 179: 32-5, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590423

RESUMO

Metaphyseal osteopathy (MO) (hypertrophic osteodystrophy) is a developmental disorder of unexplained etiology affecting dogs during rapid growth. Affected dogs experience relapsing episodes of lytic/sclerotic metaphyseal lesions and systemic inflammation. MO is rare in the general dog population; however, some breeds (Weimaraner, Great Dane and Irish Setter) have a much higher incidence, supporting a hereditary etiology. Autoinflammatory childhood disorders of parallel presentation such as chronic recurrent multifocal osteomyelitis (CRMO), and deficiency of interleukin-1 receptor antagonist (DIRA), involve impaired innate immunity pathways and aberrant cytokine production. Given the similarities between these diseases, we hypothesize that MO is an autoinflammatory disease mediated by cytokines involved in innate immunity. To characterize immune dysregulation in MO dogs we measured serum levels of inflammatory markers in 26 MO and 102 control dogs. MO dogs had significantly higher levels (pg/ml) of serum Interleukin-1beta (IL-1ß), IL-18, IL-6, Granulocyte-macrophage colony stimulating factor (GM-CSF), C-X-C motif chemokine 10 (CXCL10), tumor necrosis factor (TNF), and IL-10. Notably, recovered MO dogs were not different from dogs during active MO disease, providing a suggestive mechanism for disease predisposition. This is the first documentation of elevated immune markers in MO dogs, uncovering an immune profile similar to comparable autoinflammatory disorders in children.


Assuntos
Doenças do Desenvolvimento Ósseo/veterinária , Citocinas/sangue , Doenças do Cão/imunologia , Imunidade Inata , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Doenças do Desenvolvimento Ósseo/imunologia , Cães , Feminino , Masculino
12.
Clin Cancer Res ; 22(17): 4328-40, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26979392

RESUMO

PURPOSE: Previous studies demonstrate that intratumoral CpG immunotherapy in combination with radiotherapy acts as an in-situ vaccine inducing antitumor immune responses capable of eradicating systemic disease. Unfortunately, most patients fail to respond. We hypothesized that immunotherapy can paradoxically upregulate immunosuppressive pathways, a phenomenon we term "rebound immune suppression," limiting clinical responses. We further hypothesized that the immunosuppressive enzyme indolamine-2,3-dioxygenase (IDO) is a mechanism of rebound immune suppression and that IDO blockade would improve immunotherapy efficacy. EXPERIMENTAL DESIGN: We examined the efficacy and immunologic effects of a novel triple therapy consisting of local radiotherapy, intratumoral CpG, and systemic IDO blockade in murine models and a pilot canine clinical trial. RESULTS: In murine models, we observed marked increase in intratumoral IDO expression after treatment with radiotherapy, CpG, or other immunotherapies. The addition of IDO blockade to radiotherapy + CpG decreased IDO activity, reduced tumor growth, and reduced immunosuppressive factors, such as regulatory T cells in the tumor microenvironment. This triple combination induced systemic antitumor effects, decreasing metastases, and improving survival in a CD8(+) T-cell-dependent manner. We evaluated this novel triple therapy in a canine clinical trial, because spontaneous canine malignancies closely reflect human cancer. Mirroring our mouse studies, the therapy was well tolerated, reduced intratumoral immunosuppression, and induced robust systemic antitumor effects. CONCLUSIONS: These results suggest that IDO maintains immune suppression in the tumor after therapy, and IDO blockade promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation. Clin Cancer Res; 22(17); 4328-40. ©2016 AACR.


Assuntos
Imunomodulação/efeitos dos fármacos , Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Modelos Animais de Doenças , Cães , Ativação Enzimática , Feminino , Melanoma Experimental , Camundongos , Neoplasias/mortalidade , Neoplasias/terapia , Oligodesoxirribonucleotídeos/administração & dosagem , Radioimunoterapia/métodos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento , Microambiente Tumoral/imunologia
13.
Stem Cell Rev Rep ; 12(2): 245-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26638159

RESUMO

Mesenchymal stem cell (MSC) therapy is being increasingly used to treat dogs and horses with naturally-occurring diseases. However these animals also serve as critical large animal models for ongoing translation of cell therapy products to the human market. MSC manufacture for clinical use mandates improvement in cell culture systems to meet demands for higher MSC numbers and removal of xeno-proteins (i.e. fetal bovine serum, FBS). While serum-free media (SFM) is commercially available, its affects on MSC phenotype and immunomodulatory functions are not fully known. The objective of this study was to determine if specific MSC culture conditions, MSC expansion in HYPERFlasks® or MSC expansion in a commercially available SFM, would alter MSC proliferation, phenotype or immunomodulatory properties in vitro. MSCs cultured in HYPERFlasks® were similar in phenotype, proliferative capacity and immunomodulatory functions to MSCs grown in standard flasks however MSC yield was markedly increased. HYPERFlasks® therefore provide a viable option to generate greater cell numbers in a streamlined manner. Canine and equine MSCs expanded in SFM displayed similar proliferation, surface phenotype and inhibitory effect on lymphocyte proliferation in vitro. However, MSCs cultured in the absence of FBS secreted significantly less PGE2, and were significantly less able to inhibit IFNγ secretion by activated T-cells. Immunomodulatory functions altered by expansion in SFM were species dependent. Unlike equine MSCs, in canine adipose-derived MSCs, the inhibition of lymphocyte proliferation was not principally modulated by PGE2. The removal of FBS from both canine and equine MSC culture systems resulted in altered immunomodulatory properties in vitro and warrants further investigation prior to moving towards FBS-free culture conditions.


Assuntos
Meios de Cultura Livres de Soro/metabolismo , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Cães , Cavalos , Imunofenotipagem/métodos , Linfócitos/citologia , Linfócitos/metabolismo
14.
Stem Cells Transl Med ; 5(1): 75-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26582907

RESUMO

UNLABELLED: Mesenchymal stem cells (MSCs) are a promising therapy for immune-mediated and inflammatory disorders, because of their potent immunomodulatory properties. In this study, we investigated the use of fresh, autologous, adipose-derived MSCs (ASCs) for feline chronic gingivostomatitis (FCGS), a chronic, debilitating, idiopathic, oral mucosal inflammatory disease. Nine cats with refractory FCGS were enrolled in this pilot study. Each cat received 2 intravenous injections of 20 million autologous ASCs, 1 month apart. Oral biopsies were taken before and at 6 months after the first ASC injection. Blood immune cell subsets, serum protein, and cytokine levels were measured at 0, 1, 3, and 6 months after treatment to assess immunomodulatory effects. Seven of the 9 cats completed the study. Five cats responded to treatment by either complete clinical remission (n=3) or substantial clinical improvement (n=2). Two cats were nonresponders. Cats that responded to treatment also exhibited systemic immunomodulation demonstrated by decreased numbers of circulating CD8+ T cells, a normalization of the CD4/CD8 ratio, decreased neutrophil counts, and interferon-γ and interleukin (IL)-1ß concentration, and a temporary increase in serum IL-6 and tumor necrosis factor-α concentration. No clinical recurrence has occurred following complete clinical remission (follow-up of 6-24 months). In this study, cats with <15% cytotoxic CD8 T cells with low expression of CD8 (CD8lo) cells were 100% responsive to ASC therapy, whereas cats with >15% CD8lo cells were nonresponders. The relative absence of CD8lo cells may be a biomarker to predict response to ASC therapy, and may shed light on pathogenesis of FCGS and mechanisms by which ASCs decrease oral inflammation and affect T-cell phenotype. SIGNIFICANCE: This study is the first to demonstrate the safety and efficacy of fresh, autologous, adipose-derived stem cell systemic therapy for a naturally occurring, chronic inflammatory disease in cats. The findings demonstrate that this therapy resulted in complete clinical and histological resolution or reduction in clinical disease severity and immune modulation in most cats. This study also identified a potentially useful biomarker that could dictate patient enrollment and shed light on immune modulation mechanism. As a naturally occurring animal model, FCGS also provides a strategic platform for potentially translatable therapy for the treatment of human oral inflammatory disease.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Estomatite , Animais , Autoenxertos , Doenças do Gato/imunologia , Doenças do Gato/patologia , Doenças do Gato/terapia , Gatos , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Estomatite/imunologia , Estomatite/patologia , Estomatite/terapia , Estomatite/veterinária
15.
Stem Cell Res Ther ; 6: 73, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25888916

RESUMO

INTRODUCTION: Intravenous (IV) injection of mesenchymal stem cells (MSCs) is used to treat systemic human diseases and disorders but is not routinely used in equine therapy. In horses, MSCs are isolated primarily from adipose tissue (AT) or bone marrow (BM) and used for treatment of orthopedic injuries through one or more local injections. The objective of this study was to determine the safety and lymphocyte response to multiple allogeneic IV injections of either AT-derived MSCs (AT-MSCs) or BM-derived MSCs (BM-MSCs) to healthy horses. METHODS: We injected three doses of 25 × 10(6) allogeneic MSCs from either AT or BM (a total of 75 × 10(6) MSCs per horse) into five and five, respectively, healthy horses. Horses were followed up for 35 days after the first MSC infusion. We evaluated host inflammatory and immune response, including total leukocyte numbers, serum cytokine concentration, and splenic lymphocyte subsets. RESULTS: Repeated injection of allogeneic AT-MSCs or BM-MSCs did not elicit any clinical adverse effects. Repeated BM-MSC injection resulted in increased blood CD8(+) T-cell numbers. Multiple BM-MSC injections also increased splenic regulatory T cell numbers compared with AT-MSC-injected horses but not controls. CONCLUSIONS: These data demonstrate that multiple IV injections of allogeneic MSCs are well tolerated by healthy horses. No clinical signs or clinico-pathologic measurements of organ toxicity or systemic inflammatory response were recorded. Increased numbers of circulating CD8(+) T cells after multiple IV injections of allogeneic BM-MSCs may indicate a mild allo-antigen-directed cytotoxic response. Safety and efficacy of allogeneic MSC IV infusions in sick horses remain to be determined.


Assuntos
Subpopulações de Linfócitos/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Fatores de Transcrição Forkhead/metabolismo , Cavalos , Injeções Intravenosas , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Síndrome de Resposta Inflamatória Sistêmica , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transplante Homólogo
16.
Stem Cells Dev ; 24(7): 814-23, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25404388

RESUMO

Mesenchymal stem cells (MSCs) are a promising therapeutic option for various immune-mediated and inflammatory disorders due to their potent immunomodulatory and trophic properties. Naturally occurring diseases in large animal species may serve as surrogate animal models of human disease, as they may better reflect the complex genetic, environmental, and physiologic variation present in outbred populations. We work with naturally occurring diseases in large animal species to better understand how MSCs work and to facilitate optimal translation of MSC-based therapies. We are investigating the use of MSC therapy for a chronic oral inflammatory disease in cats. During our efforts to expand fat-derived feline MSCs (fMSCs), we observed that∼50% of the cell lines developed giant foamy multinucleated cells in later passages. These morphologic alterations were associated with proliferation arrest. We hypothesized that the cytopathic effects were caused by infection with a retrovirus, feline foamy virus (FFV). Using transmission electron microscopy, polymerase chain reaction, and in vitro assays, we determined that syncytial cell formation and proliferation arrest in fMSCs were caused by FFV strains that were highly homologous to previously reported FFV strains. We determined that the antiretroviral drug, tenofovir, may be used to support ex vivo expansion and salvage of FFV-infected fMSC lines. MSC lines derived from specific pathogen-free cats do not appear to be infected with FFV and may be a source of allogeneic fMSCs for clinical application. FFV infection of fMSC lines may hinder large-scale expansion of autologous MSC for therapeutic use in feline patients.


Assuntos
Células-Tronco Mesenquimais/virologia , Cultura Primária de Células/veterinária , Spumavirus/patogenicidade , Animais , Gatos , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Mesenquimais/citologia
17.
Stem Cells Dev ; 23(16): 1831-43, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24803072

RESUMO

Mesenchymal stem cells (MSCs) are somatic, multipotent stromal cells with potent immunomodulatory and regenerative properties. Although MSCs have pattern recognition receptors and are modulated by Toll-like receptor ligands, MSC-microbial interactions are poorly defined. The objectives of this study were to determine the effect of bacterial association on MSC function. We hypothesized that gastrointestinal bacteria associate with MSCs and alter their immunomodulatory properties. The effect of MSC-microbial interactions on MSC morphology, viability, proliferation, migration, and immunomodulatory functions was investigated. MSCs associated with a remarkable array of enteric pathogens and commensal bacteria. MSC interactions with two model organisms, the pathogen Salmonella typhimurium and the probiotic Lactobacillus acidophilus, were further investigated. While ST readily invaded MSCs, LB adhered to the MSC plasma membrane. Neither microbe induced MSC death, degeneration, or diminished proliferation. Microbial association did not upregulate MHC-II, CD80/86, or CD1 expression. MSC-microbial interaction significantly increased transcription of key immunomodulatory genes, including COX2, IL6, and IL8, coupled with significantly increased prostaglandin E2 (PGE2), interleukin (IL)6, and IL8 secretion. MSC-ST coincubation resulted in increased MSC expression of CD54, and significant augmentation of MSC inhibition of mitogen-induced T-cell proliferation. T-cell proliferation was partially restored when PGE2 secretion was blocked from ST-primed MSCs. MSC-microbe interactions have a profound effect on MSC function and may be pivotal in a variety of clinical settings where MSCs are being explored as potential therapeutics in the context of microbial communities, such as Crohn's disease, chronic nonhealing wounds, and sepsis.


Assuntos
Trato Gastrointestinal/microbiologia , Células-Tronco Mesenquimais/microbiologia , Salmonella typhimurium/fisiologia , Animais , Aderência Bacteriana , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Cães , Interações Hospedeiro-Patógeno , Imunomodulação , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Linfócitos T/fisiologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA