Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38326277

RESUMO

Cardiac tolerance to ischaemia can be increased by dietary interventions such as fasting, which is associated with significant changes in myocardial gene expression. Among the possible mechanisms of how gene expression may be altered are epigenetic modifications of RNA - epitranscriptomics. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are two of the most prevalent modifications in mRNA. These methylations are reversible and regulated by proteins called writers, erasers, readers, and m6A-repelled proteins. We analysed 33 of these epitranscriptomic regulators in rat hearts after cardioprotective 3-day fasting using RT-qPCR, Western blot, and targeted proteomic analysis. We found that the most of these regulators were changed on mRNA or protein levels in fasting hearts, including up-regulation of both demethylases - FTO and ALKBH5. In accordance, decreased methylation (m6A+m6Am) levels were detected in cardiac total RNA after fasting. We also identified altered methylation levels in Nox4 and Hdac1 transcripts, both of which play a role in the cytoprotective action of ketone bodies produced during fasting. Furthermore, we investigated the impact of inhibiting demethylases ALKBH5 and FTO in adult rat primary cardiomyocytes (AVCMs). Our findings indicate that inhibiting these demethylases reduced the hypoxic tolerance of AVCMs isolated from fasting rats. This study showed that the complex epitranscriptomic machinery around m6A and m6Am modifications is regulated in the fasting hearts and might play an important role in cardiac adaptation to fasting, a well-known cardioprotective intervention.


Assuntos
Adenosina , Proteômica , Animais , Ratos , Adenosina/genética , Adenosina/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , Jejum
2.
Epigenetics ; 18(1): 2218771, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37331009

RESUMO

Epitranscriptomic modifications have recently emerged into the spotlight of researchers due to their vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6,2'-O-dimethyladenosine (m6Am) is one of the most prevalent chemical marks on RNA and is dynamically regulated by writers (PCIF1, METTL4) and erasers (FTO). The presence or absence of m6Am in RNA affects mRNA stability, regulates transcription, and modulates pre-mRNA splicing. Nevertheless, its functions in the heart are poorly known. This review summarizes the current knowledge and gaps about m6Am modification and its regulators in cardiac biology. It also points out technical challenges and lists the currently available techniques to measure m6Am. A better understanding of epitranscriptomic modifications is needed to improve our knowledge of the molecular regulations in the heart which may lead to novel cardioprotective strategies.


Assuntos
Adenosina , Metilação de DNA , RNA Mensageiro/genética , Adenosina/metabolismo , RNA/metabolismo , Biologia
3.
J Appl Physiol (1985) ; 130(3): 746-755, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332989

RESUMO

The infarct size-limiting effect elicited by cold acclimation (CA) is accompanied by increased mitochondrial resistance and unaltered ß1-adrenergic receptor (AR) signaling persisting for 2 wk at room temperature. As the mechanism of CA-elicited cardioprotection is not fully understood, we examined the role of the salvage ß2-AR/Gi/Akt pathway. Male Wistar rats were exposed to CA (8°C, 5 wk), whereas the recovery group (CAR) was kept at 24°C for additional 2 wk. We show that the total number of myocardial ß-ARs in the left ventricular myocardium did not change after CA but decreased after CAR. We confirmed the infarct size-limiting effect in both CA and CAR groups. Acute administration of ß2-AR inhibitor ICI-118551 abolished the protective effect in the CAR group but had no effect in the control and CA groups. The inhibitory Giα1/2 and Giα3 proteins increased in the membrane fraction of the CAR group, and the phospho-Akt (Ser473)-to-Akt ratio also increased. Expression, phosphorylation, and mitochondrial location of the Akt target glycogen synthase kinase (GSK-3ß) were affected neither by CA nor by CAR. However, GSK-3ß translocated from the Z-disk to the H-zone after CA, and acquired its original location after CAR. Our data indicate that the cardioprotection observed after CAR is mediated by the ß2-AR/Gi pathway and Akt activation. Further studies are needed to unravel downstream targets of the central regulators of the CA process and the downstream targets of the Akt protein after CAR.NEW & NOTEWORTHY Cardioprotective effect of cold acclimation and that persisting for 2 wk after recovery engage in different mechanisms. The ß2-adrenoceptor/Gi pathway and Akt are involved only in the mechanism of infarct size-limiting effect occurring during the recovery phase. GSK-3ß translocated from the Z-line to the H-zone of sarcomeres by cold acclimation returns back to the original position after the recovery phase. The results provide new insights potentially useful for the development of cardiac therapies.


Assuntos
Traumatismo por Reperfusão Miocárdica , Aclimatação , Animais , Glicogênio Sintase Quinase 3 beta , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 2
4.
Clin Sci (Lond) ; 133(16): 1827-1844, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31409729

RESUMO

Although proteasome inhibitors (PIs) are modern targeted anticancer drugs, they have been associated with a certain risk of cardiotoxicity and heart failure (HF). Recently, PIs have been combined with anthracyclines (ANTs) to further boost their anticancer efficacy. However, this raised concerns regarding cardiac safety, which were further supported by several in vitro studies on immature cardiomyocytes. In the present study, we investigated the toxicity of clinically used PIs alone (bortezomib (BTZ), carfilzomib (CFZ)) as well as their combinations with an ANT (daunorubicin (DAU)) in both neonatal and adult ventricular cardiomyocytes (NVCMs and AVCMs) and in a chronic rabbit model of DAU-induced HF. Using NVCMs, we found significant cytotoxicity of both PIs around their maximum plasma concentration (cmax) as well as significant augmentation of DAU cytotoxicity. In AVCMs, BTZ did not induce significant cytotoxicity in therapeutic concentrations, whereas the toxicity of CFZ was significant and more profound. Importantly, neither PI significantly augmented the cardiotoxicity of DAU despite even more profound proteasome-inhibitory activity in AVCMs compared with NVCMs. Furthermore, in young adult rabbits, no significant augmentation of chronic ANT cardiotoxicity was noted with respect to any functional, morphological, biochemical or molecular parameter under study, despite significant inhibition of myocardial proteasome activity. Our experimental data show that combination of PIs with ANTs is not accompanied by an exaggerated risk of cardiotoxicity and HF in young adult animal cardiomyocytes and hearts.


Assuntos
Antraciclinas/toxicidade , Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Inibidores de Proteassoma/toxicidade , Animais , Antraciclinas/administração & dosagem , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Bortezomib/administração & dosagem , Bortezomib/toxicidade , Daunorrubicina/administração & dosagem , Daunorrubicina/toxicidade , Relação Dose-Resposta a Droga , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/toxicidade , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/administração & dosagem , Coelhos , Ratos , Ratos Wistar
5.
Cell Metab ; 29(2): 399-416.e10, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30449682

RESUMO

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/fisiologia , Pirimidinas/metabolismo , Animais , Linhagem Celular Tumoral , Respiração Celular , Di-Hidro-Orotato Desidrogenase , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Ubiquinona/metabolismo
6.
Physiol Genomics ; 50(7): 532-541, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29676955

RESUMO

Recently we have shown that adaptation to continuous normobaric hypoxia (CNH) decreases myocardial ischemia/reperfusion injury in spontaneously hypertensive rats (SHR) and in a conplastic strain (SHR-mtBN). The protective effect was stronger in the latter group characterized by a selective replacement of the SHR mitochondrial genome with that of a more ischemia-resistant Brown Norway strain. The aim of the present study was to examine the possible involvement of the hypoxia inducible factor (HIF)-dependent pathway of the protein kinase B/glucose transporters/hexokinase (Akt/GLUT/HK) in this mitochondrial genome-related difference of the cardioprotective phenotype. Adult male rats were exposed for 3 wk to CNH ([Formula: see text] 0.1). The expression of dominant isoforms of Akt, GLUT, and HK in left ventricular myocardium was determined by real-time RT-PCR and Western blotting. Subcellular localization of GLUTs was assessed by quantitative immunofluorescence. Whereas adaptation to hypoxia markedly upregulated protein expression of HK2, GLUT1, and GLUT4 in both rat strains, Akt2 protein level was significantly increased in SHR-mtBN only. Interestingly, a higher content of HK2 was revealed in the sarcoplasmic reticulum-enriched fraction in SHR-mtBN after CNH. The increased activity of HK determined in the mitochondrial fraction after CNH in both strains suggested an increase of HK association with mitochondria. Interestingly, HIF1a mRNA increased and HIF2a mRNA decreased after CNH, the former effect being more pronounced in SHR-mtBN than in SHR. Pleiotropic effects of upregulated Akt2 along with HK translocation to mitochondria and mitochondria-associated membranes can potentially contribute to a stronger CNH-afforded cardioprotection in SHR-mtBN compared with progenitor SHR.


Assuntos
Genoma Mitocondrial/genética , Hipóxia , Mitocôndrias Cardíacas/genética , Miocárdio/metabolismo , Transdução de Sinais/genética , Adaptação Fisiológica/genética , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Hipertensão/genética , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Mitocôndrias Cardíacas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos BN , Ratos Endogâmicos SHR , Especificidade da Espécie
7.
Can J Physiol Pharmacol ; 95(10): 1163-1169, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28472590

RESUMO

Long-lasting ischemia can result in cell loss; however, repeated episodes of brief ischemia increase the resistance of the heart against deleterious effects of subsequent prolonged ischemic insult and promote cell survival. Traditionally, it is believed that the supply of blood to the ischemic heart is associated with release of cytokines, activation of inflammatory response, and induction of necrotic cell death. In the past few years, this paradigm of passive necrosis as an uncontrolled cell death has been re-examined and the existence of a strictly regulated form of necrotic cell death, necroptosis, has been documented. This controlled cell death modality, resembling all morphological features of necrosis, has been investigated in different types of ischemia-associated heart injuries. The process of necroptosis has been found to be dependent on the activation of RIP1-RIP3-MLKL axis, which induces changes leading to the rupture of cell membrane. This pathway is activated by TNF-α, which has also been implicated in the cardioprotective signaling pathway of ischemic preconditioning. Thus, this review is intended to describe the TNF-α-mediated signaling leading to either cell survival or necroptotic cell death. In addition, some experimental data suggesting a link between heart dysfunction and the cellular loss due to necroptosis are discussed in various conditions of myocardial ischemia.


Assuntos
Apoptose , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Humanos , Isquemia Miocárdica/metabolismo , Miocárdio/patologia , Necrose , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Cell Biochem ; 432(1-2): 99-108, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28290047

RESUMO

Adaptation to chronic hypoxia represents a potential cardioprotective intervention reducing the extent of acute ischemia/reperfusion (I/R) injury, which is a major cause of death worldwide. The main objective of this study was to investigate the anti-apoptotic Akt/hexokinase 2 (HK2) pathway in hypoxic hearts subjected to I/R insult. Hearts isolated from male Wistar rats exposed either to continuous normobaric hypoxia (CNH; 10% O2) or to room air for 3 weeks were perfused according to Langendorff and subjected to 10 min of no-flow ischemia and 10 min of reperfusion. The hearts were collected either after ischemia or after reperfusion and used for protein analyses and quantitative fluorescence microscopy. The CNH resulted in increased levels of HK1 and HK2 proteins and the total HK activity after ischemia compared to corresponding normoxic group. Similarly, CNH hearts exhibited increased ischemic level of Akt protein phosphorylated on Ser473. The CNH also strengthened the interaction of HK2 with mitochondria and prevented downregulation of mitochondrial creatine kinase after reperfusion. The Bax/Bcl-2 ratio was significantly lower after I/R in CNH hearts than in normoxic ones, suggesting a lower probability of apoptosis. In conclusion, the Akt/HK2 pathway is likely to play a role in the development of a cardioprotective phenotype of CNH by preventing the detachment of HK2 from mitochondria at reperfusion period and decreases the Bax/Bcl-2 ratio during I/R insult, thereby lowering the probability of apoptosis activation in the mitochondrial compartment.


Assuntos
Hexoquinase/metabolismo , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Masculino , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos Wistar
9.
J Appl Physiol (1985) ; 122(6): 1452-1461, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28209739

RESUMO

Chronic hypoxia and exercise are natural stimuli that confer sustainable cardioprotection against ischemia-reperfusion (I/R) injury, but it is unknown whether they can act in synergy to enhance ischemic resistance. Inflammatory response mediated by tumor necrosis factor-α (TNF-α) plays a role in the infarct size limitation by continuous normobaric hypoxia (CNH), whereas exercise is associated with anti-inflammatory effects. This study was conducted to determine if exercise training performed under conditions of CNH (12% O2) affects myocardial ischemic resistance with respect to inflammatory and redox status. Adult male Wistar rats were assigned to one of the following groups: normoxic sedentary, normoxic trained, hypoxic sedentary, and hypoxic trained. ELISA and Western blot analysis, respectively, were used to quantify myocardial cytokines and the expression of TNF-α receptors, nuclear factor-κB (NF-κB), and selected components of related signaling pathways. Infarct size and arrhythmias were assessed in open-chest rats subjected to I/R. CNH increased TNF-α and interleukin-6 levels and the expression of TNF-α type 2 receptor, NF-κB, inducible nitric oxide synthase (iNOS), cytosolic phospholipase A2α, cyclooxygenase-2, manganese superoxide dismutase (MnSOD), and catalase. None of these effects occurred in the normoxic trained group, whereas exercise in hypoxia abolished or significantly attenuated CNH-induced responses, except for NF-κB, iNOS, and MnSOD. Both CNH and exercise reduced infarct size, but their combination provided the same degree of protection as CNH alone. In conclusion, exercise training does not amplify the cardioprotection conferred by CNH. High ischemic tolerance of the CNH hearts persists after exercise, possibly by maintaining the increased antioxidant capacity despite attenuating TNF-α-dependent protective signaling.NEW & NOTEWORTHY Chronic hypoxia and regular exercise are natural stimuli that confer sustainable myocardial protection against acute ischemia-reperfusion injury. Signaling mediated by TNF-α via its type 2 receptor plays a role in the cardioprotective mechanism of chronic hypoxia. In the present study, we found that exercise training of rats during adaptation to hypoxia does not amplify the infarct size-limiting effect. Ischemia-resistant phenotype is maintained in the combined hypoxia-exercise setting despite exercise-induced attenuation of TNF-α-dependent protective signaling.


Assuntos
Adaptação Fisiológica/fisiologia , Hipóxia/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Animais , Ciclo-Oxigenase 2/metabolismo , Hipóxia/metabolismo , Interleucina-6/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Hum Mol Genet ; 25(21): 4674-4685, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28173120

RESUMO

TMEM70, a 21-kDa protein localized in the inner mitochondrial membrane, has been shown to facilitate the biogenesis of mammalian F1Fo ATP synthase. Mutations of the TMEM70 gene represent the most frequent cause of isolated ATP synthase deficiency resulting in a severe mitochondrial disease presenting as neonatal encephalo-cardiomyopathy (OMIM 604273). To better understand the biological role of this factor, we generated Tmem70-deficient mice and found that the homozygous Tmem70-/- knockouts exhibited profound growth retardation and embryonic lethality at ∼9.5 days post coitum. Blue-Native electrophoresis demonstrated an isolated deficiency in fully assembled ATP synthase in the Tmem70-/- embryos (80% decrease) and a marked accumulation of F1 complexes indicative of impairment in ATP synthase biogenesis that was stalled at the early stage, following the formation of F1 oligomer. Consequently, a decrease in ADP-stimulated State 3 respiration, respiratory control ratio and ATP/ADP ratios, indicated compromised mitochondrial ATP production. Tmem70-/- embryos exhibited delayed development of the cardiovascular system and a disturbed heart mitochondrial ultrastructure, with concentric or irregular cristae structures. Tmem70+/- heterozygous mice were fully viable and displayed normal postnatal growth and development of the mitochondrial oxidative phosphorylation system. Nevertheless, they presented with mild deterioration of heart function. Our results demonstrated that Tmem70 knockout in the mouse results in embryonic lethality due to the lack of ATP synthase and impairment of mitochondrial energy provision. This is analogous to TMEM70 dysfunction in humans and verifies the crucial role of this factor in the biosynthesis and assembly of mammalian ATP synthase.


Assuntos
Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatias/metabolismo , Feminino , Homozigoto , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Erros Inatos do Metabolismo/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/biossíntese , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Fosforilação Oxidativa , Gravidez
11.
Vascul Pharmacol ; 73: 45-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26304700

RESUMO

This study examined the effects of a novel orally active 14,15-epoxyeicosatrienoic acid analog (EET-A) on blood pressure (BP) and myocardial infarct size (IS) in two-kidney, one-clip (2K1C) Goldblatt hypertensive rats during sustained phase of hypertension. Between days 31 and 35 after clip placement the rats were treated with EET-A and BP was monitored by radiotelemetry; sham-operated normotensive rats were used as controls. Tissue concentrations of epoxyeicosatrienoic acids served as a marker of production of epoxygenase metabolites. The rats were subjected to acute myocardial ischemia/reperfusion (I/R) injury and IS was determined. We found that EET-A treatment did not lower BP in 2K1C rats and did not alter availability of biologically active epoxygenase metabolites in 2K1C or in sham-operated rats. The myocardial IS was significantly smaller in untreated 2K1C rats as compared with normotensive controls and EET-A reduced it in controls but not in 2K1C rats. Our findings suggest that during the phase of sustained hypertension 2K1C Goldblatt hypertensive rats exhibit increased cardiac tolerance to I/R injury as compared with normotensive controls, and that in this animal model of human renovascular hypertension short-term treatment with EET-A does not induce any antihypertensive and cardioprotective actions.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Pressão Sanguínea/efeitos dos fármacos , Hipertensão Renovascular/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Ácido 8,11,14-Eicosatrienoico/administração & dosagem , Administração Oral , Animais , Monitorização Ambulatorial da Pressão Arterial/métodos , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Telemetria , Fatores de Tempo
12.
Physiol Genomics ; 46(18): 671-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25073601

RESUMO

Common inbred strains of the laboratory rat can be divided into four major mitochondrial DNA (mtDNA) haplotype groups represented by the BN, F344, LEW, and SHR strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. F344 mtDNA by comparing the SHR vs. SHR-mt(F344) conplastic strains that are genetically identical except for their mitochondrial genomes. Altogether 13 amino acid substitutions in protein coding genes, seven single nucleotide polymorphisms in tRNA genes, and 12 single nucleotide changes in rRNA genes were detected in F344 mtDNA compared with SHR mtDNA. Analysis of oxidative phosphorylation system (OXPHOS) in heart left ventricles (LV), muscle, and liver revealed reduced activity and content of several respiratory chain complexes in SHR-mt(F344) conplastic rats compared with the SHR strain. Lower function of OXPHOS in LV of conplastic rats was associated with significantly increased relative ventricular mass and reduced fractional shortening that was independent of blood pressure. In addition, conplastic rats exhibited reduced sensitivity of skeletal muscles to insulin action and impaired glucose tolerance. These results provide evidence that inherited alterations in mitochondrial genome, in the absence of variation in the nuclear genome and other confounding factors, predispose to insulin resistance, cardiac hypertrophy and systolic dysfunction.


Assuntos
Cardiomegalia/genética , Cardiomegalia/fisiopatologia , DNA Mitocondrial/genética , Resistência à Insulina/genética , Fosforilação Oxidativa , Sístole , Nucleotídeos de Adenina/metabolismo , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Eletrocardiografia , Transporte de Elétrons/efeitos dos fármacos , Dosagem de Genes , Genes Mitocondriais , Glucose/metabolismo , Teste de Tolerância a Glucose , Haplótipos/genética , Insulina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Dados de Sequência Molecular , Tamanho do Órgão/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Fenótipo , RNA de Transferência/genética , Ratos Endogâmicos F344 , Ratos Endogâmicos SHR , Análise de Sequência de DNA , Sístole/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
13.
Pflugers Arch ; 465(10): 1477-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23636771

RESUMO

Dysfunction or abnormalities in the regulation of fatty acid translocase Cd36, a multifunctional membrane protein participating in uptake of long-chain fatty acids, has been linked to the development of heart diseases both in animals and humans. We have previously shown that the Cd36 transgenic spontaneously hypertensive rat (SHR-Cd36), with a wild type Cd36, has higher susceptibility to ischemic ventricular arrhythmias when compared to spontaneously hypertensive rat (SHR) carrying a mutant Cd36 gene, which may have been related to increased ß-adrenergic responsiveness of these animals (Neckar et al., 2012 Physiol. Genomics 44:173-182). The present study aimed to determine whether the insertion of the wild type Cd36 into SHR would affect the function of myocardial G protein-regulated adenylyl cyclase (AC) signaling. ß-Adrenergic receptors (ß-ARs) were characterized by radioligand-binding experiments and the expression of selected G protein subunits, AC, and protein kinase A (PKA) was determined by RT-PCR and Western blot analyses. There was no significant difference in the amount of trimeric G proteins, but the number of ß-ARs was higher (by about 35 %) in myocardial preparations from SHR-Cd36 as compared to SHR. Besides that, transgenic rats expressed increased amount (by about 20 %) of the dominant myocardial isoforms AC5/6 and contained higher levels of both nonphosphorylated (by 11 %) and phosphorylated (by 45 %) PKA. Differently stimulated AC activity in SHR-Cd36 significantly exceeded (by about 18-30 %) the enzyme activity in SHR. Changes at the molecular level were reflected by higher contractile responses to stimulation by the adrenergic agonist dobutamine. In summary, it can be concluded that the increased susceptibility to ischemic arrhythmias of SHR-Cd36 is attributable to upregulation of some components of the ß-AR signaling pathway, which leads to enhanced sensitization of AC and increased cardiac adrenergic responsiveness.


Assuntos
Adenilil Ciclases/metabolismo , Antígenos CD36/genética , Miocárdio/metabolismo , Transdução de Sinais , Adenilil Ciclases/genética , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Antígenos CD36/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dobutamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Contração Miocárdica , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Receptores Adrenérgicos beta/metabolismo
14.
Cell Physiol Biochem ; 31(1): 66-79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23343752

RESUMO

BACKGROUND/AIMS: Hexokinase (HK) is a key glycolytic enzyme which promotes the maintenance of glucose homeostasis in cardiomyocytes. HK1 isoform is predominantly bound to the outer mitochondrial membrane and highly supports oxidative phosphorylation by increasing the availability of ADP for complex V of the respiratory chain. HK2 isoform is under physiological conditions predominantly localized in the cytosol and upon stimulation of PI3K/ Akt pathway associates with mitochondria and thus can prevent apoptosis. The purpose of this study was to investigate expression and subcellular localization of both HK isoforms in left (LV) and right (RV) heart ventricles of adult male Wistar rats. METHODS: Real-Time RT-PCR, Western blotting, and quantitative immunofluorescence microscopy were used. RESULTS: Our results showed a significantly higher expression of both HK1 and HK2 at mRNA and protein levels in the RV compared to the LV. These findings were corroborated by immunofluorescence staining which revealed substantially higher fluorescence signals of both HKs in the RV than in the LV. The ratios of phospho-Ser473-Akt/non-phospho-Akt and phospho-Thr308-Akt/non-phospho-Akt were also markedly higher in the RV than in the LV. CONCLUSION: These results suggest that the RV has a higher activity of aerobic glycolytic metabolism and may be able to respond faster and more powerfully to stressful stimuli than the LV.


Assuntos
Ventrículos do Coração/metabolismo , Hexoquinase/metabolismo , Mitocôndrias/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Hexoquinase/análise , Hexoquinase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Microscopia de Fluorescência , Fosforilação , Proteínas Proto-Oncogênicas c-akt/análise , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
15.
Can J Physiol Pharmacol ; 90(9): 1303-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22913659

RESUMO

Dexrazoxane (DEX), an inhibitor of topoisomerase II and intracellular iron chelator, is believed to reduce the formation of reactive oxygen species (ROS) and protects the heart from the toxicity of anthracycline antineoplastics. As ROS also play a role in the pathogenesis of cardiac ischaemia/reperfusion (I/R) injury, the aim was to find out whether DEX can improve cardiac ischaemic tolerance. DEX in a dose of 50, 150, or 450 mg·(kg body mass)(-1) was administered intravenously to rats 60 min before ischaemia. Myocardial infarct size and ventricular arrhythmias were assessed in anaesthetized open-chest animals subjected to 20 min coronary artery occlusion and 3 h reperfusion. Arrhythmias induced by I/R were also assessed in isolated perfused hearts. Only the highest dose of DEX significantly reduced infarct size from 53.9% ± 4.7% of the area at risk in controls to 37.5% ± 4.3% without affecting the myocardial markers of oxidative stress. On the other hand, the significant protective effect against reperfusion arrhythmias occurred only in perfused hearts with the dose of DEX of 150 mg·kg(-1), which also tended to limit the incidence of ischaemic arrhythmias. It is concluded that DEX in a narrow dose range can suppress arrhythmias in isolated hearts subjected to I/R, while a higher dose is needed to limit myocardial infarct size in open-chest rats.


Assuntos
Arritmias Cardíacas/prevenção & controle , Fármacos Cardiovasculares/uso terapêutico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Razoxano/uso terapêutico , Doença Aguda , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Fármacos Cardiovasculares/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrocardiografia , Técnicas In Vitro , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/metabolismo , Perfusão , Ratos , Ratos Wistar , Razoxano/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento
16.
Nature ; 478(7367): 114-8, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21979051

RESUMO

Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Cardiomegalia/patologia , Endodesoxirribonucleases/metabolismo , Mitocôndrias/metabolismo , Animais , Apoptose , Peso Corporal/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Respiração Celular , Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Feminino , Regulação da Expressão Gênica , Genes Mitocondriais/genética , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Metabolismo dos Lipídeos , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Tamanho do Órgão/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Locos de Características Quantitativas/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Endogâmicos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
17.
J Appl Physiol (1985) ; 109(4): 1195-202, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20634361

RESUMO

Although physiological responses to chronic hypoxia, including pulmonary hypertension and right ventricular hypertrophy, have been well described, the molecular mechanisms involved in cardiopulmonary adaptations are still not fully understood. We hypothesize that adaptive responses to chronic hypoxia are the result of altered transcriptional regulations in the right and left ventricles. Here we report results from the gene expression profiling of adaptive responses in a chronically hypoxic heart. Of 11 analyzed candidate genes, the expression of seven and four genes, respectively, was significantly altered in the right ventricle of hypoxic male and female mice. In the transcriptional profile of the left ventricle, we identified a single expression change in hypoxic males (Vegfa gene). To directly test the role of HIF1, we analyzed the expression profile in Hif1a partially deficient mice exposed to moderate hypoxia. Our data showed that Hif1a partial deficiency significantly altered transcriptional profiles of analyzed genes in hypoxic hearts. The expression changes were only detected in two genes in the right ventricle of Hif1a(+/-) males and in one gene in the right ventricle of Hif1a(+/-) females. First, our results suggest that hypoxia mainly affects adaptive expression profiles in the right ventricle and that each ventricle can respond independently. Second, our findings indicate that HIF1a plays an important role in adaptive cardiopulmonary responses and the dysfunction of HIF1 pathways considerably affects transcriptional regulation in the heart. Third, our data reveal significant differences between males and females in cardiac adaptive responses to hypoxia and indicate the necessity of optimizing diagnostic and therapeutic procedures in clinical practice, with respect to sex.


Assuntos
Perfilação da Expressão Gênica , Ventrículos do Coração/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia/genética , Função Ventricular/genética , Adaptação Fisiológica , Animais , Pressão Sanguínea , Peso Corporal , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Doença Crônica , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ventrículos do Coração/fisiopatologia , Hematócrito , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores Sexuais , Fatores de Tempo , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/genética
18.
Can J Physiol Pharmacol ; 87(12): 1055-62, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20029542

RESUMO

Opening of mitochondrial KATP channels (mitoKATP) has been reported to underlie protection against ischaemia-reperfusion injury induced by ischaemic preconditioning (I-PC); however, the molecular mechanisms of its antiarrhythmic effect have not been fully elucidated. We explored the involvement of phosphatidylinositol 3-kinase (PI3K)/Akt in the PC-like effect of mitoKATP opener diazoxide with particular regard to its role in protection against ischaemia-induced arrhythmias. Langendorff-perfused rat hearts were subjected to 30 min LAD occlusion with or without a prior 15 min of perfusion with diazoxide (50 micromol/L) given either alone (D-PC) or in combination with the PI3K/Akt inhibitor wortmannin (100 nmol/L). In an additional protocol, ischaemia was followed by 2 h reperfusion for infarct size (IS) determination (tetrazolium staining). The total number of premature ventricular complexes over the whole period of ischaemia, episodes of ventricular tachycardia and its duration were significantly lower in the D-PC group than in the non-preconditioned controls (158 +/- 20, 2 +/- 0.6 and 4.6 +/- 1.8 s vs. 551 +/- 61, 11 +/- 2 and 42 +/- 8 s, respectively; p < 0.05), concomitant with a 62% reduction in the size of infarction. Wortmannin modified neither arrhythmogenesis nor IS in the non-preconditioned hearts. Bracketing of diazoxide with wortmannin did not reverse the antiarrhythmic protection, whereas the IS-limiting effect was blunted. The results indicate that in contrast with the positive role of PI3K/Akt in protection against lethal myocardial injury, its activity is not involved in suppression of ischaemia-induced arrhythmias conferred by mitoKATP opening in the rat heart.


Assuntos
Arritmias Cardíacas/fisiopatologia , Mitocôndrias Cardíacas/fisiologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fosfatidilinositol 3-Quinases/fisiologia , Canais de Potássio/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Androstadienos/farmacologia , Animais , Arritmias Cardíacas/tratamento farmacológico , Diazóxido/farmacologia , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Ratos , Ratos Wistar , Vasodilatadores/farmacologia , Wortmanina
19.
Mol Cell Biochem ; 297(1-2): 111-20, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17016676

RESUMO

Endogenous cardiac protection against prolonged ischemic insult can be achieved by repeated brief episodes of ischemia (hypoxia) or by cardiac adaptation to various stresses such as chronic hypoxia. Activation of phosphatidylinositol 3-kinase (PI3K)/Akt is involved in antiapoptotic effects, however, it is not clear whether it is required for overall heart salvage including protection against myocardial infarction and arrhythmias. We focussed on the potential common role of PI3K/Akt in anti-infarct protection, in the experimental settings of long-term adaptation to chronic intermittent hypobaric hypoxia (IHH; 8 h/day, 25-30 exposures, in vivo rats) and acute ischemic preconditioning (IP; Langendorff-perfused hearts). In addition, we explored the role of PI3K/Akt in susceptibility to ischemic ventricular arrhythmias. In normoxic open-chest rats, PI3K/Akt inhibitor LY294002 (LY; 0.3 mg/kg) given 5 min before test occlusion/reperfusion (I/R) did not affect infarct size (IS) normalized to the size of area at risk (AR). In hypoxic rats, LY partially attenuated IS-limiting effect of IHH (IS/AR 59.7 +/- 4.1% vs. 51.8 +/- 4.4% in the non-treated rats; p > 0.05) and increased IS/AR to its value in normoxic rats (64.9 +/- 5.1%). In the isolated hearts, LY (5 muM) applied 15 min prior to I/R completely abolished anti-infarct protection by IP (IS/AR 55.0 +/- 4.9% vs. 15.2 +/- 1.2% in the non-treated hearts and 42.0 +/- 5.5% in the non-preconditioned controls; p < 0.05). In the non-preconditioned hearts, PI3K/Akt inhibition did not modify IS/AR, on the other hand, it markedly suppressed arrhythmias. In the LY-treated isolated hearts, the total number of ventricular premature beats and the incidence of ventricular tachycardia (VT) was reduced from 518 +/- 71 and 100% in the controls to 155 +/- 15 and 12.5%, respectively (p < 0.05). Moreover, bracketing of IP with LY did not reverse antiarrhythmic effect of IP. These results suggest that activation of PI3K/Akt cascade plays a role in the IS-limiting mechanism in the rat heart, however, it is not involved in the mechanisms of antiarrhythmic protection.


Assuntos
Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/prevenção & controle , Infarto do Miocárdio/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Arritmias Cardíacas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Diástole/efeitos dos fármacos , Suscetibilidade a Doenças , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hematócrito , Hipóxia/induzido quimicamente , Técnicas In Vitro , Precondicionamento Isquêmico Miocárdico , Masculino , Infarto do Miocárdio/induzido quimicamente , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Ratos Wistar , Fluxo Sanguíneo Regional
20.
Clin Exp Pharmacol Physiol ; 33(8): 714-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16895545

RESUMO

1. The number of adult patients undergoing surgery for congenital cyanotic defects in childhood has increased significantly. Therefore, the aim of the present study was to examine the effect of perinatal hypoxia on the tolerance of the adult myocardium to acute ischaemia-reperfusion injury. 2. Pregnant Wistar rats were exposed to intermittent hypobaric hypoxia 7 days before delivery; pups were born under normoxic conditions and exposed to hypoxia again for 10 postnatal days. After the last hypoxic exposure, all animals were kept for an additional 3 months under normoxic conditions. All experiments were performed on 90-day-old rats. 3. Ventricular arrhythmias were assessed on isolated perfused hearts during 30 min occlusion of the left anterior descending coronary artery. Infarct size was measured on isolated hearts (40 min regional ischaemia and 120 min reperfusion) and on open-chest animals (20 min regional ischaemia and 3 h reperfusion). 4. Perinatal exposure to hypoxia significantly increased cardiac tolerance to ischaemic injury in adult females, as evidenced by the lower incidence and severity of ischaemic ventricular arrhythmias, compared with the normoxic group. The effect of perinatal hypoxia on ischaemic arrhythmias in males was quite the opposite. Myocardial infarct size measured in open-chest animals only was significantly smaller in normoxic females compared with normoxic males. Perinatal exposure to hypoxia had no effect on infarct size in either setting or sex. 5. The results of the present study support the hypothesis that perinatal hypoxia is a primary programming stimulus in the heart that may lead to sex-dependent changes in cardiac tolerance to acute ischaemia in later adult life. This would have important implications for patients who have experienced prolonged hypoxaemia in early life.


Assuntos
Arritmias Cardíacas/prevenção & controle , Hipóxia Fetal/fisiopatologia , Coração/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Peso Corporal , Vasos Coronários/cirurgia , Modelos Animais de Doenças , Feminino , Hipóxia Fetal/patologia , Frequência Cardíaca , Ventrículos do Coração , Masculino , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Tamanho do Órgão , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA