Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 26(7): 1280-1291, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38567448

RESUMO

BACKGROUND: Extracellular vesicles (EVs) obtained by noninvasive liquid biopsy from patient blood can serve as biomarkers. Here, we investigated the potential of circulating plasma EVs to serve as an indicator in the diagnosis, prognosis, and treatment response of glioblastoma patients. METHODS: Plasma samples were collected from glioblastoma patients at multiple timepoints before and after surgery. EV concentrations were measured by nanoparticle tracking analysis and imaging flow cytometry. Tumor burden and edema were quantified by 3D reconstruction. EVs and tumors were further monitored in glioma-bearing mice. RESULTS: Glioblastoma patients displayed a 5.5-fold increase in circulating EVs compared to healthy donors (P < .0001). Patients with higher EV levels had significantly shorter overall survival and progression-free survival than patients with lower levels, and the plasma EV concentration was an independent prognostic parameter for overall survival. EV levels correlated with the extent of peritumoral fluid-attenuated inversion recovery hyperintensity but not with the size of the contrast-enhancing tumor, and similar findings were obtained in mice. Postoperatively, EV concentrations decreased rapidly back to normal levels, and the magnitude of the decline was associated with the extent of tumor resection. EV levels remained low during stable disease, but increased again upon tumor recurrence. In some patients, EV resurgence preceded the magnetic resonance imaging detectability of tumor relapse. CONCLUSIONS: Our findings suggest that leakiness of the blood-brain barrier may primarily be responsible for the high circulating EV concentrations in glioblastoma patients. Elevated EVs reflect tumor presence, and their quantification may thus be valuable in assessing disease activity.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioblastoma/sangue , Glioblastoma/diagnóstico , Glioblastoma/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Animais , Biomarcadores Tumorais/sangue , Camundongos , Prognóstico , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Taxa de Sobrevida , Adulto , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/diagnóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Biópsia Líquida/métodos
2.
Mol Pharm ; 20(10): 4994-5005, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37733943

RESUMO

Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteômica , Apoptose , Proliferação de Células , Receptores ErbB , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
3.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511168

RESUMO

The CRISPR/Cas system has a broad range of possible medical applications, but its clinical translation has been hampered, particularly by the lack of safe and efficient vector systems mediating the short-term expression of its components. Recently, different virus-like particles (VLPs) have been introduced as promising vectors for the delivery of CRISPR/Cas genome editing components. Here, we characterized and directly compared three different types of retrovirus-based (R) VLPs, two derived from the γ-retrovirus murine leukemia virus (gRVLPs and "enhanced" egRVLPs) and one from the lentivirus human immunodeficiency virus, HIV (LVLPs). First, we unified and optimized the production of the different RVLPs. To ensure maximal comparability of the produced RVLPs, we adapted several assays, including nanoparticle tracking analysis (NTA), multi-parametric imaging flow cytometry (IFC), and Cas9-ELISA, to analyze their morphology, surface composition, size, and concentration. Next, we comparatively tested the three RVLPs targeting different genes in 293T model cells. Using identical gRNAs, we found egRVLPs to mediate the most efficient editing. Functional analyses indicated better cargo (i.e., Cas9) transfer and/or release as the underlying reason for their superior performance. Finally, we compared on- and off-target activities of the three RVLPs in human-induced pluripotent stem cells (hiPSC) exploiting the clinically relevant C-C motif chemokine receptor 5 (CCR5) as the target. Again, egRVLPs facilitated the highest, almost 100% knockout rates, importantly with minimal off-target activity. In conclusion, in direct comparison, egRVLPs were the most efficient RVLPs. Moreover, we established methods for in-depth characterization of VLPs, facilitating their validation and thus more predictable and safe application.


Assuntos
Sistemas CRISPR-Cas , Nanopartículas , Camundongos , Animais , Humanos , Sistemas CRISPR-Cas/genética , Retroviridae/genética , Edição de Genes/métodos , Lentivirus/genética
4.
J Cancer Res Clin Oncol ; 149(3): 1319-1329, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36030286

RESUMO

PURPOSE: The prospective multicenter VARIANZ study aimed to identify resistance biomarkers for HER2-targeted treatment in advanced gastric and esophago-gastric junction cancer (GC, EGJC). HER2 test deviations were found in 90 (22.3%) of 404 cases (central versus local testing) and were associated with negative impact on survival for trastuzumab-treated patients. Here, we investigated methodological and biological variables that may promote deviating HER2 test results. METHODS: We analyzed HER2 testing procedures and participation in quality assurance programs of 105 participating local pathology laboratories. Furthermore, tumor localization and histological subtypes were compared between patients with centrally confirmed (central HER2 + /local HER2 + , n = 68) and unconfirmed HER2 status (central HER2 -/local HER2 + , n = 68). RESULTS: For central HER2 testing, concordance between in situ hybridization (ISH) and immunohistochemistry (IHC) was 98.3%, with IHC sensitivity of 93.3% (84 IHC + of 90 ISH +), specificity of 99.5% (389 IHC- of 391 ISH-), and a positive diagnosis rate of 97.7%. Central confirmation of the local HER2 IHC scores were seen for the majority of locally HER2- IHC 0/1 (172/178; 96.6%), but less frequently for locally IHC3 + (57/124; 46.0%) cases. Deviation rate was not associated with IHC antibody platform used in the local pathology institute neither with participation in quality-assuring tests. Regarding tumor characteristics, deviating test results were more frequently found in GC vs. EGJC (69.1% vs. 39.7%; p = 0.001) and in Laurén diffuse vs. intestinal subtype (23.5% vs. 5.9%, p = 0.004). CONCLUSION: Tumor localization and histological subtype have an impact on HER2 test deviation rates. Assessment of HER2 remains challenging for GC and EGJC.


Assuntos
Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Receptor ErbB-2/genética , Neoplasias Gástricas/patologia , Hibridização in Situ Fluorescente/métodos , Estudos Prospectivos , Trastuzumab , Biomarcadores Tumorais/análise
5.
Neuro Oncol ; 24(12): 2078-2090, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551407

RESUMO

BACKGROUND: Extracellular vesicles (EVs) play an important role in cell-cell communication, and tumor-derived EVs circulating in patient blood can serve as biomarkers. Here, we investigated the potential role of plasma EVs in meningioma patients for tumor detection and determined whether EVs secreted by meningioma cells reflect epigenetic, genomic, and proteomic alterations of original tumors. METHODS: EV concentrations were quantified in patient plasma (n = 46). Short-term meningioma cultures were established (n = 26) and secreted EVs were isolated. Methylation and copy number profiling was performed using 850k arrays, and mutations were identified by targeted gene panel sequencing. Differential quantitative mass spectrometry was employed for proteomic analysis. RESULTS: Levels of circulating EVs were elevated in meningioma patients compared to healthy individuals, and the plasma EV concentration correlated with malignancy grade and extent of peritumoral edema. Postoperatively, EV counts dropped to normal levels, and the magnitude of the postoperative decrease was associated with extent of tumor resection. Methylation profiling of EV-DNA allowed correct tumor classification as meningioma in all investigated cases, and accurate methylation subclass assignment in almost all cases. Copy number variations present in tumors, as well as tumor-specific mutations were faithfully reflected in meningioma EV-DNA. Proteomic EV profiling did not permit original tumor identification but revealed tumor-associated proteins that could potentially be utilized to enrich meningioma EVs from biofluids. CONCLUSIONS: Elevated EV levels in meningioma patient plasma could aid in tumor diagnosis and assessment of treatment response. Meningioma EV-DNA mirrors genetic and epigenetic tumor alterations and facilitates molecular tumor classification.


Assuntos
Vesículas Extracelulares , Neoplasias Meníngeas , Meningioma , Humanos , Proteômica/métodos , Meningioma/diagnóstico , Meningioma/genética , Meningioma/metabolismo , Variações do Número de Cópias de DNA , Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo
6.
J Clin Oncol ; 39(13): 1468-1478, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764808

RESUMO

PURPOSE: Trastuzumab is the only approved targeted drug for first-line treatment of human epidermal growth factor receptor 2-positive (HER2+) metastatic gastric cancer (mGC). However, not all patients respond and most eventually progress. The multicenter VARIANZ study aimed to investigate the background of response and resistance to trastuzumab in mGC. METHODS: Patients receiving medical treatment for mGC were prospectively recruited in 35 German sites and followed for up to 48 months. HER2 status was assessed centrally by immunohistochemistry and chromogenic in situ hybridization. In addition, HER2 gene expression was assessed using qPCR. RESULTS: Five hundred forty-eight patients were enrolled, and 77 had HER2+ mGC by central assessment (14.1%). A high deviation rate of 22.7% between central and local test results was seen. Patients who received trastuzumab for centrally confirmed HER2+ mGC (central HER2+/local HER2+) lived significantly longer as compared with patients who received trastuzumab for local HER2+ but central HER2- mGC (20.5 months, n = 60 v 10.9 months, n = 65; hazard ratio, 0.42; 95% CI, 8.2 to 14.4; P < .001). In the centrally confirmed cohort, significantly more tumor cells stained HER2+ than in the unconfirmed cohort, and the HER2 amplification ratio was significantly higher. A minimum of 40% HER2+ tumor cells and a HER2 amplification ratio of ≥ 3.0 were calculated as optimized thresholds for predicting benefit from trastuzumab. CONCLUSION: Significant discrepancies in HER2 assessment of mGC were found in tumor specimens with intermediate HER2 expression. Borderline HER2 positivity and heterogeneity of HER2 expression should be considered as resistance factors for HER2-targeting treatment of mGC. HER2 thresholds should be reconsidered. Detailed reports with quantification of HER2 expression and amplification levels may improve selection of patients for HER2-directed treatment.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/mortalidade , Trastuzumab/uso terapêutico , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Taxa de Sobrevida
7.
J Clin Invest ; 130(10): 5257-5271, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603315

RESUMO

Immunotherapeutic strategies are increasingly important in neuro-oncology, and the elucidation of escape mechanisms that lead to treatment resistance is crucial. We investigated the impact of immune pressure on the clonal dynamics and immune escape signature by comparing glioma growth in immunocompetent versus immunodeficient mice. Glioma-bearing WT and Pd-1-/- mice survived significantly longer than immunodeficient Pfp-/- Rag2-/- mice. While tumors in Pfp-/- Rag2-/- mice were highly polyclonal, immunoedited tumors in WT and Pd-1-/- mice displayed reduced clonality with emergence of immune escape clones. Tumor cells in WT mice were distinguished by an IFN-γ-mediated response signature with upregulation of genes involved in immunosuppression. Tumor-infiltrating stromal cells, which include macrophages/microglia, contributed even more strongly to the immunosuppressive signature than the actual tumor cells. The identified murine immune escape signature was reflected in human patients and correlated with poor survival. In conclusion, immune pressure profoundly shapes the clonal composition and gene regulation in malignant gliomas.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , Evasão Tumoral/imunologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Evolução Clonal/genética , Evolução Clonal/imunologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioma/genética , Glioma/patologia , Humanos , Imunocompetência , Hospedeiro Imunocomprometido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Citotóxicas Formadoras de Poros/deficiência , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/imunologia , Evasão Tumoral/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
8.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178271

RESUMO

Extracellular vesicles (EVs) are known for their important role in cancer progression and hold considerable potential as a source for tumor biomarkers. However, purification of tumor-specific EVs from patient plasma is still an urgent unmet need due to contamination by normal host cell-derived EVs, that results in compromised analytical sensitivity. Here we identified fatty acid synthase (FASN), a key lipogenic enzyme which is highly expressed in malignant glioma cells, to be elevated in CD63- and CD81-positive EVs in glioma patient plasma samples, opening vital opportunities to sort brain tumor-specific EVs.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Glioma/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Exossomos/metabolismo , Vesículas Extracelulares/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/patologia , Humanos
9.
J Extracell Vesicles ; 8(1): 1588555, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949309

RESUMO

Cells release heterogeneous nano-sized vesicles either as exosomes, being derived from endosomal compartments, or through budding from the plasma membrane as so-called microvesicles, commonly referred to as extracellular vesicles (EVs). EVs are known for their important roles in mammalian physiology and disease pathogenesis and provide a potential biomarker source in cancer patients. EVs are generally often analysed in bulk using Western blotting or by bead-based flow-cytometry or, with limited parameters, through nanoparticle tracking analysis. Due to their small size, single EV analysis is technically highly challenging. Here we demonstrate imaging flow cytometry (IFCM) to be a robust, multiparametric technique that allows analysis of single EVs and the discrimination of distinct EV subpopulations. We used IFCM to analyse the tetraspanin (CD9, CD63, CD81) surface profiles on EVs from human and murine cell cultures as well as plasma samples. The presence of EV subpopulations with specific tetraspanin profiles suggests that EV-mediated cellular responses are tightly regulated and dependent on cell environment. We further demonstrate that EVs with double positive tetraspanin expression (CD63+/CD81+) are enriched in cancer cell lines and patient plasma samples. In addition, we used IFCM to detect tumour-specific GFP-labelled EVs in the blood of mice bearing syngeneic intracerebral gliomas, indicating that this technique allows unprecedented disease modelling. In summary, our study highlights the heterogeneous and adaptable nature of EVs according to their marker profile and demonstrates that IFCM facilitates multiparametric phenotyping of EVs not only in vitro but also in patient plasma at a single EV level, with the potential for future functional studies and clinically relevant applications. Abbreviation: EDTA = ethylenediamine tetraacetic acid.

10.
Int J Med Microbiol ; 308(1): 118-128, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28969988

RESUMO

Pathogenic mycobacteria of the Mycobacterium tuberculosis complex (MTBC) have co-evolved with their individual hosts and are able to transform the hostile environment of the macrophage into a permissive cellular habitat. The impact of MTBC genetic variability has long been considered largely unimportant in TB pathogenesis. Members of the MTBC can now be distinguished into three major phylogenetic groups consisting of 7 phylogenetic lineages and more than 30 so called sub-lineages/subgroups. MTBC genetic diversity indeed influences the transmissibility and virulence of clinical MTBC isolates as well as the immune response and the clinical outcome. Here we review the genetic diversity and epidemiology of MTBC strains and describe the current knowledge about the host immune response to infection with MTBC clinical isolates using human and murine experimental model systems in vivo and in vitro. We discuss the role of innate cytokines in detail and portray two in our group recently developed approaches to characterize the intracellular niches of MTBC strains. Characterizing the niches and deciphering the strategies of MTBC strains to transform an antibacterial effector cell into a permissive cellular habitat offers the opportunity to identify strain- and lineage-specific key factors which may represent targets for novel antimicrobial or host directed therapies for tuberculosis.


Assuntos
Variação Genética , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Animais , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/fisiologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Tuberculose/epidemiologia , Tuberculose/imunologia , Virulência
11.
Chembiochem ; 18(13): 1172-1176, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28249101

RESUMO

Mycobacterium tuberculosis (Mtb), the main causative agent of tuberculosis (Tb), has a complex cell envelope which forms an efficient barrier to antibiotics, thus contributing to the challenges of anti-tuberculosis therapy. However, the unique Mtb cell wall can be considered an advantage and be utilized to selectively label Mtb bacteria. Here we introduce three azido pentoses as new compounds for metabolic labeling of Mtb: 3-azido arabinose (3AraAz), 3-azido ribose (3RiboAz), and 5-azido arabinofuranose (5AraAz). 5AraAz demonstrated the highest level of Mtb labeling and was efficiently incorporated into the Mtb cell wall. All three azido pentoses can be easily used to label a variety of Mtb clinical isolates without influencing Mtb-dependent phagosomal maturation arrest in infection studies with human macrophages. Thus, this metabolic labeling method offers the opportunity to attach desired molecules to the surface of Mtb bacteria in order to facilitate investigation of the varying virulence characteristics of different Mtb clinical isolates, which influence the outcome of a Tb infection.


Assuntos
Azidas/química , Parede Celular/química , Mycobacterium tuberculosis/química , Pentoses/química , Coloração e Rotulagem/métodos , Biomarcadores/metabolismo , Parede Celular/metabolismo , Citometria de Fluxo , Expressão Gênica , Humanos , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Mycobacterium tuberculosis/metabolismo , Fagocitose , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/imunologia
12.
Neuro Oncol ; 15(10): 1289-301, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877316

RESUMO

BACKGROUND: The treatment efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors like erlotinib has not met expectations for glioblastoma therapy, even for EGFR-overexpressing tumors. We determined possible mechanisms of therapy resistance using the unique BS153 glioblastoma cell line, which has retained amplification of the egfr gene and expression of EGFR variant (v)III. METHODS: Functional effects of erlotinib, gefitinib, and cetuximab on BS153 proliferation, migration, and EGFR-dependent signal transduction were systematically compared in vitro. The tumor-initiating capacity of parental and treatment-resistant BS153 was studied in Naval Medical Research Institute/Foxn1(nu) mice. Potential mediators of resistance were knocked down using small interfering (si)RNA. RESULTS: Erlotinib and gefitinib inhibited proliferation and migration of BS153 in a dose-dependent manner, whereas cetuximab had no effect. BS153 developed resistance to erlotinib (BS153(resE)) but not to gefitinib. Resistance was associated with strong upregulation of EGFRvIII and subsequent activation of the phosphatidylinositol-3-OH kinase (PI3K) pathway in BS153(resE) and an increased expression of the regulatory 110-kDa delta subunit of PI3K (p110δ). Knockdown of EGFRvIII in BS153(resE) largely restored sensitivity to erlotinib. Targeting PI3K pharmacologically caused a significant decrease in cell viability, and specifically targeting p110δ by siRNA partially restored erlotinib sensitivity in BS153(resE). In vivo, BS153 formed highly invasive tumors with an unusual growth pattern, displaying numerous satellites distant from the initial injection site. Erlotinib resistance led to delayed onset of tumor growth as well as prolonged overall survival of mice without changing tumor morphology. CONCLUSIONS: EGFRvIII can mediate resistance to erlotinib in EGFR-amplified glioblastoma via an increase in PI3Kp110δ. Interfering with PI3Kp110δ can restore sensitivity toward the tyrosine kinase inhibitor.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Amplificação de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quinazolinas/farmacologia , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Sobrevivência Celular , Receptores ErbB/genética , Cloridrato de Erlotinib , Citometria de Fluxo , Imunofluorescência , Fatores de Transcrição Forkhead/fisiologia , Glioblastoma/patologia , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA