Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 99: 272-278, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034694

RESUMO

Rat is commonly used for pharmacokinetic screening during pharmaceutical lead optimization. To handle the large number of compounds, rats with a single jugular vein cannulation are commonly utilized for intravenous pharmacokinetic studies, where the same cannula is used both for dose administration and blood sampling. We demonstrate that the single cannula method is not suitable for all compounds, especially for high logP compounds. We propose an alternative dual cannulation technique in which two cannulas are placed in the same jugular vein, thus avoiding an additional surgery. Compounds were administered orally or via intravenous infusion to compare PK parameters, including bioavailability, using both procedures. For itraconazole and amiodarone, known to bind to the cannula, the measured plasma exposures were substantially higher in the single cannulated rats than those from dual cannulated rats. Area under the plasma concentration time curve differed by 79% and 74% for itraconazole and amiodarone, respectively. When compared to the single cannulation approach, clearance, volume of distribution and bioavailability determined by dual cannulation were 39%, 60% and 38% higher for itraconazole, and 46%, 34% and 42% higher for amiodarone, respectively. In contrast, all pharmacokinetic parameters were similar between single and dual-cannulated rats for the hydrophilic compound atenolol. Based on these results, we recommend the use of dual cannulated rats for intravenous pharmacokinetic studies when testing a series of hydrophobic compounds that may be prone to non-specific binding to the cannula. If single cannulated model is selected for pharmacokinetic screening, we recommend a bridging study with dual cannulated rats with representative compounds of a given chemical series.


Assuntos
Amiodarona/farmacocinética , Cateterismo/métodos , Itraconazol/farmacocinética , Veias Jugulares/metabolismo , Administração Intravenosa/métodos , Administração Oral , Animais , Disponibilidade Biológica , Coleta de Amostras Sanguíneas/métodos , Masculino , Ratos , Ratos Sprague-Dawley
2.
Drug Metab Dispos ; 44(3): 320-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26714763

RESUMO

Although the metabolism and disposition of diclofenac (DF) has been studied extensively, information regarding the plasma levels of its acyl-ß-d-glucuronide (DF-AG), a major metabolite, in human subjects is limited. Therefore, DF-AG concentrations were determined in plasma (acidified blood derived) of six healthy volunteers following a single oral DF dose (50 mg). Levels of DF-AG in plasma were high, as reflected by a DF-AG/DF ratio of 0.62 ± 0.21 (Cmax mean ± S.D.) and 0.84 ± 0.21 (area under the concentration-time curve mean ± S.D.). Both DF and DF-AG were also studied as substrates of different human drug transporters in vitro. DF was identified as a substrate of organic anion transporter (OAT) 2 only (Km = 46.8 µM). In contrast, DF-AG was identified as a substrate of numerous OATs (Km = 8.6, 60.2, 103.9, and 112 µM for OAT2, OAT1, OAT4, and OAT3, respectively), two organic anion-transporting polypeptides (OATP1B1, Km = 34 µM; OATP2B1, Km = 105 µM), breast cancer resistance protein (Km = 152 µM), and two multidrug resistance proteins (MRP2, Km = 145 µM; MRP3, Km = 196 µM). It is concluded that the disposition of DF-AG, once formed, can be mediated by various candidate transporters known to be expressed in the kidney (basolateral, OAT1, OAT2, and OAT3; apical, MRP2, BCRP, and OAT4) and liver (canalicular, MRP2 and BCRP; basolateral, OATP1B1, OATP2B1, OAT2, and MRP3). DF-AG is unstable in plasma and undergoes conversion to parent DF. Therefore, caution is warranted when assessing renal and hepatic transporter-mediated drug-drug interactions with DF and DF-AG.


Assuntos
Transporte Biológico/fisiologia , Diclofenaco/metabolismo , Glucuronídeos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Interações Medicamentosas/fisiologia , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA