Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(26): 3813-3823, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37142461

RESUMO

BACKGROUND: During the COVID-19 pandemic multiple vaccines were rapidly developed and widely used throughout the world. At present there is very little information on COVID-19 vaccine interactions with primary human immune cells such as peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages and dendritic cells (moDCs). METHODS: Human PBMCs, macrophages and moDCs were stimulated with different COVID-19 vaccines, and the expression of interferon (IFN-λ1, IFN-α1), pro-inflammatory (IL-1ß, IL-6, IL-8, IL-18, CXCL-4, CXCL-10, TNF-α) and Th1-type cytokine mRNAs (IL-2, IFN-γ) were analyzed by qPCR. In addition, the expression of vaccine induced spike (S) protein and antiviral molecules were studied in primary immune cells and in A549 lung epithelial cells. RESULTS: Adenovirus vector (Ad-vector) vaccine AZD1222 induced high levels of IFN-λ1, IFN-α1, CXCL-10, IL-6, and TNF-α mRNAs in PBMCs at early time points of stimulation while the expression of IFN-γ and IL-2 mRNA took place at later times. AZD1222 also induced IFN-λ1, CXCL-10 and IL-6 mRNA expression in monocyte-derived macrophages and DCs in a dose-dependent fashion. AZD1222 also activated the phosphorylation of IRF3 and induced MxA expression. BNT162b2 and mRNA-1273 mRNA vaccines failed to induce or induced very weak cytokine gene expression in all cell models. None of the vaccines enhanced the expression of CXCL-4. AZD1222 and mRNA-1273 vaccines induced high expression of S protein in all studied cells. CONCLUSIONS: Ad-vector vaccine induces higher IFN and pro-inflammatory responses than the mRNA vaccines in human immune cells. This data shows that AZD1222 readily activates IFN and pro-inflammatory cytokine gene expression in PBMCs, macrophages and DCs, but fails to further enhance CXCL-4 mRNA expression.


Assuntos
COVID-19 , Vacinas , Humanos , Interferons/metabolismo , Leucócitos Mononucleares , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Fator de Necrose Tumoral alfa/metabolismo , Vacinas de mRNA , Vacina BNT162 , Vacina de mRNA-1273 contra 2019-nCoV , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Pandemias , Células Dendríticas , Citocinas/metabolismo , Macrófagos , RNA Mensageiro/metabolismo , Adenoviridae
2.
Nat Commun ; 13(1): 2476, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513437

RESUMO

Two COVID-19 mRNA (of BNT162b2, mRNA-1273) and two adenovirus vector vaccines (ChAdOx1 and Janssen) are licensed in Europe, but optimization of regime and dosing is still ongoing. Here we show in health care workers (n = 328) that two doses of BNT162b2, mRNA-1273, or a combination of ChAdOx1 adenovirus vector and mRNA vaccines administrated with a long 12-week dose interval induce equally high levels of anti-SARS-CoV-2 spike antibodies and neutralizing antibodies against D614 and Delta variant. By contrast, two doses of BNT162b2 with a short 3-week interval induce 2-3-fold lower titers of neutralizing antibodies than those from the 12-week interval, yet a third BNT162b2 or mRNA-1273 booster dose increases the antibody levels 4-fold compared to the levels after the second dose, as well as induces neutralizing antibody against Omicron BA.1 variant. Our data thus indicates that a third COVID-19 mRNA vaccine may induce cross-protective neutralizing antibodies against multiple variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
3.
Microbiol Spectr ; 9(1): e0077421, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378952

RESUMO

The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells.


Assuntos
COVID-19/imunologia , Células Epiteliais/imunologia , Imunidade Inata , Pulmão/imunologia , SARS-CoV-2/isolamento & purificação , Replicação Viral/fisiologia , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Citocinas/genética , Células Epiteliais/virologia , Expressão Gênica , Humanos , Interferon Tipo I/genética , Interferons/genética , Cinética , Pulmão/virologia , Filogenia , RNA Viral , SARS-CoV-2/classificação , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Tripsina , Interferon lambda
4.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33905505

RESUMO

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Testes de Neutralização , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
5.
Front Immunol ; 12: 694105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069519

RESUMO

Filovirus family consists of highly pathogenic viruses that have caused fatal outbreaks especially in many African countries. Previously, research focus has been on Ebola, Sudan and Marburg viruses leaving other filoviruses less well studied. Filoviruses, in general, pose a significant global threat since they are highly virulent and potentially transmissible between humans causing sporadic infections and local or widespread epidemics. Filoviruses have the ability to downregulate innate immunity, and especially viral protein 24 (VP24), VP35 and VP40 have variably been shown to interfere with interferon (IFN) gene expression and signaling. Here we systematically analyzed the ability of VP24 proteins of nine filovirus family members to interfere with retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated antigen 5 (MDA5) induced IFN-ß and IFN-λ1 promoter activation. All VP24 proteins were localized both in the cell cytoplasm and nucleus in variable amounts. VP24 proteins of Zaire and Sudan ebolaviruses, Lloviu, Taï Forest, Reston, Marburg and Bundibugyo viruses (EBOV, SUDV, LLOV, TAFV, RESTV, MARV and BDBV, respectively) were found to inhibit both RIG-I and MDA5 stimulated IFN-ß and IFN-λ1 promoter activation. The inhibition takes place downstream of interferon regulatory factor 3 phosphorylation suggesting the inhibition to occur in the nucleus. VP24 proteins of Mengla (MLAV) or Bombali viruses (BOMV) did not inhibit IFN-ß or IFN-λ1 promoter activation. Six ebolavirus VP24s and Lloviu VP24 bound tightly, whereas MARV and MLAV VP24s bound weakly, to importin α5, the subtype that regulates the nuclear import of STAT complexes. MARV and MLAV VP24 binding to importin α5 was very weak. Our data provides new information on the innate immune inhibitory mechanisms of filovirus VP24 proteins, which may contribute to the pathogenesis of filovirus infections.


Assuntos
Proteína DEAD-box 58/imunologia , Filoviridae/imunologia , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/imunologia , Interleucinas/imunologia , Regiões Promotoras Genéticas/imunologia , Receptores Imunológicos/imunologia , Proteínas Virais/imunologia , Linhagem Celular Tumoral , Proteína DEAD-box 58/genética , Filoviridae/genética , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Interferon Tipo I/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferons/genética , Interleucinas/genética , Receptores Imunológicos/genética , Proteínas Virais/genética
6.
J Clin Virol ; 54(2): 156-61, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22406272

RESUMO

BACKGROUND: Human parechoviruses (HPeVs) are common viruses mainly infecting young children. Most infections are mild, but HPeV3 causes severe CNS infections in new-born infants. OBJECTIVES: The aim was to study the epidemiology of HPeVs in Finnish general population in the period 1996-2007, with special emphasis on the different types circulating in Finland. STUDY DESIGN: A total of 2236 stool specimens were collected from 200 healthy Finnish children in a prospective birth cohort study, most before the age of 2 years. Samples were tested for the presence of HPeV RNA using a specific RT-PCR. The genotype of HPeV was determined by sequencing the VP1 genomic region. RESULTS: HPeV RNA was detected in 144 (6.4%) specimens from 78 (39%) children. The dominant type was HPeV1 (93% of the type-identified 105 samples), although types 3 and 6 were also identified. HPeV was found sequentially in more than one sample in 43 infections lasting up to 93 days. The positive findings were distributed equally in young ages and declined towards the age of 2 years. Infections clustered around the autumn months with no obvious change between years. No significant differences were seen between boys and girls. CONCLUSIONS: HPeV is a common virus infecting Finnish children under 2 years of age. HPeVs circulate throughout the year with clear accumulation on autumn, also seen in individual years over the 11-year study period. The virus deserves increased attention and should be included in the test panel of clinical virus laboratories.


Assuntos
Portador Sadio/epidemiologia , Fezes/virologia , Parechovirus/isolamento & purificação , Infecções por Picornaviridae/epidemiologia , Portador Sadio/virologia , Pré-Escolar , Análise por Conglomerados , Estudos de Coortes , Feminino , Finlândia/epidemiologia , Genótipo , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Infecções por Picornaviridae/virologia , Prevalência , Estudos Prospectivos , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA