Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Front Oncol ; 14: 1273437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706611

RESUMO

Background: In patients with locally advanced breast cancer (LABC) receiving neoadjuvant chemotherapy (NAC), quantitative ultrasound (QUS) radiomics can predict final responses early within 4 of 16-18 weeks of treatment. The current study was planned to study the feasibility of a QUS-radiomics model-guided adaptive chemotherapy. Methods: The phase 2 open-label randomized controlled trial included patients with LABC planned for NAC. Patients were randomly allocated in 1:1 ratio to a standard arm or experimental arm stratified by hormonal receptor status. All patients were planned for standard anthracycline and taxane-based NAC as decided by their medical oncologist. Patients underwent QUS imaging using a clinical ultrasound device before the initiation of NAC and after the 1st and 4th weeks of treatment. A support vector machine-based radiomics model developed from an earlier cohort of patients was used to predict treatment response at the 4th week of NAC. In the standard arm, patients continued to receive planned chemotherapy with the treating oncologists blinded to results. In the experimental arm, the QUS-based prediction was conveyed to the responsible oncologist, and any changes to the planned chemotherapy for predicted non-responders were made by the responsible oncologist. All patients underwent surgery following NAC, and the final response was evaluated based on histopathological examination. Results: Between June 2018 and July 2021, 60 patients were accrued in the study arm, with 28 patients in each arm available for final analysis. In patients without a change in chemotherapy regimen (53 of 56 patients total), the QUS-radiomics model at week 4 of NAC that was used demonstrated an accuracy of 97%, respectively, in predicting the final treatment response. Seven patients were predicted to be non-responders (observational arm (n=2), experimental arm (n=5)). Three of 5 non-responders in the experimental arm had chemotherapy regimens adapted with an early initiation of taxane therapy or chemotherapy intensification, or early surgery and ended up as responders on final evaluation. Conclusion: The study demonstrates the feasibility of QUS-radiomics adapted guided NAC for patients with breast cancer. The ability of a QUS-based model in the early prediction of treatment response was prospectively validated in the current study. Clinical trial registration: clinicaltrials.gov, ID NCT04050228.

2.
Front Oncol ; 14: 1359148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756659

RESUMO

Objective: Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response to NAC for patients with Locally Advanced Breast Cancer (LABC) before treatment initiation could be beneficial to optimize therapy, ensuring the administration of effective treatments. The objective of the work here was to develop a predictive model to predict tumor response to NAC for LABC using deep learning networks and computed tomography (CT). Materials and methods: Several deep learning approaches were investigated including ViT transformer and VGG16, VGG19, ResNet-50, Res-Net-101, Res-Net-152, InceptionV3 and Xception transfer learning networks. These deep learning networks were applied on CT images to assess the response to NAC. Performance was evaluated based on balanced_accuracy, accuracy, sensitivity and specificity classification metrics. A ViT transformer was applied to utilize the attention mechanism in order to increase the weight of important part image which leads to better discrimination between classes. Results: Amongst the 117 LABC patients studied, 82 (70%) had clinical-pathological response and 35 (30%) had no response to NAC. The ViT transformer obtained the best performance range (accuracy = 71 ± 3% to accuracy = 77 ± 4%, specificity = 86 ± 6% to specificity = 76 ± 3%, sensitivity = 56 ± 4% to sensitivity = 52 ± 4%, and balanced_accuracy=69 ± 3% to balanced_accuracy=69 ± 3%) depending on the split ratio of train-data and test-data. Xception network obtained the second best results (accuracy = 72 ± 4% to accuracy = 65 ± 4, specificity = 81 ± 6% to specificity = 73 ± 3%, sensitivity = 55 ± 4% to sensitivity = 52 ± 5%, and balanced_accuracy = 66 ± 5% to balanced_accuracy = 60 ± 4%). The worst results were obtained using VGG-16 transfer learning network. Conclusion: Deep learning networks in conjunction with CT imaging are able to predict the tumor response to NAC for patients with LABC prior to start. A ViT transformer could obtain the best performance, which demonstrated the importance of attention mechanism.

3.
IEEE Trans Med Imaging ; PP2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329864

RESUMO

Nanobubbles (NBs; ~100-500 nm diameter) are preclinical ultrasound (US) contrast agents that expand applications of contrast enhanced US (CEUS). Due to their sub-micron size, high particle density, and deformable shell, NBs in pathological states of heightened vascular permeability (e.g. in tumors) extravasate, enabling applications not possible with microbubbles (~1000-10,000 nm diameter). A method that can separate intravascular versus extravascular NB signal is needed as an imaging biomarker for improved tumor detection. We present a demonstration of decorrelation time (DT) mapping for enhanced tumor NB-CEUS imaging. In vitro models validated the sensitivity of DT to agent motion. Prostate cancer mouse models validated in vivo imaging potential and sensitivity to cancerous tissue. Our findings show that DT is inversely related to NB motion, offering enhanced detail of NB dynamics in tumors, and highlighting the heterogeneity of the tumor environment. Average DT was high in tumor regions (~9 s) compared to surrounding normal tissue (~1 s) with higher sensitivity to tumor tissue compared to other mapping techniques. Molecular NB targeting to tumors further extended DT (11 s) over non-targeted NBs (6 s), demonstrating sensitivity to NB adherence. From DT mapping of in vivo NB dynamics we demonstrate the heterogeneity of tumor tissue while quantifying extravascular NB kinetics and delineating intra-tumoral vasculature. This new NB-CEUS-based biomarker can be powerful in molecular US imaging, with improved sensitivity and specificity to diseased tissue and potential for use as an estimator of vascular permeability and the enhanced permeability and retention (EPR) effect in tumors.

4.
J Control Release ; 367: 135-147, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237687

RESUMO

Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.


Assuntos
Neoplasias Hepáticas , Microbolhas , Ratos , Animais , Humanos , Distribuição Tecidual , Doxorrubicina/uso terapêutico , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral
5.
Sci Rep ; 14(1): 2340, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282158

RESUMO

Locally advanced breast cancer (LABC) is a severe type of cancer with a poor prognosis, despite advancements in therapy. As the disease is often inoperable, current guidelines suggest upfront aggressive neoadjuvant chemotherapy (NAC). Complete pathological response to chemotherapy is linked to improved survival, but conventional clinical assessments like physical exams, mammography, and imaging are limited in detecting early response. Early detection of tissue response can improve complete pathological response and patient survival while reducing exposure to ineffective and potentially harmful treatments. A rapid, cost-effective modality without the need for exogenous contrast agents would be valuable for evaluating neoadjuvant therapy response. Conventional ultrasound provides information about tissue echogenicity, but image comparisons are difficult due to instrument-dependent settings and imaging parameters. Quantitative ultrasound (QUS) overcomes this by using normalized power spectra to calculate quantitative metrics. This study used a novel transfer learning-based approach to predict LABC response to neoadjuvant chemotherapy using QUS imaging at pre-treatment. Using data from 174 patients, QUS parametric images of breast tumors with margins were generated. The ground truth response to therapy for each patient was based on standard clinical and pathological criteria. The Residual Network (ResNet) deep learning architecture was used to extract features from the parametric QUS maps. This was followed by SelectKBest and Synthetic Minority Oversampling (SMOTE) techniques for feature selection and data balancing, respectively. The Support Vector Machine (SVM) algorithm was employed to classify patients into two distinct categories: nonresponders (NR) and responders (RR). Evaluation results on an unseen test set demonstrate that the transfer learning-based approach using spectral slope parametric maps had the best performance in the identification of nonresponders with precision, recall, F1-score, and balanced accuracy of 100, 71, 83, and 86%, respectively. The transfer learning-based approach has many advantages over conventional deep learning methods since it reduces the need for large image datasets for training and shortens the training time. The results of this study demonstrate the potential of transfer learning in predicting LABC response to neoadjuvant chemotherapy before the start of treatment using quantitative ultrasound imaging. Prediction of NAC response before treatment can aid clinicians in customizing ineffectual treatment regimens for individual patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Ultrassonografia/métodos , Quimioterapia Adjuvante , Aprendizado de Máquina
6.
Artigo em Inglês | MEDLINE | ID: mdl-38240946

RESUMO

In the present work, we have designed a one-pot green protocol in which anti-cancer drugs (curcumin and doxorubicin) can be directly loaded on the surface of gold nanoparticles during their formation. We have further demonstrated that low-intensity pulsed ultrasound (LIPUS) can be used to effectively induce the release of anti-cancer drugs from the surface of gold nanoparticles in an ex vivo tissue model. With this protocol, gold nanoparticles can be easily loaded with different types of anticancer drugs, irrespective of their affinity towards water, and even hydrophobic molecules, like curcumin, can be attached onto the gold nanoparticles in an aqueous medium. The method is very simple and straightforward and does not require stirring or mechanical shaking. The drug molecules interact with the gold seeds formed during the reduction and growth process and modulate the final morphology into a spherical shape. A black-colored colloidal solution of gold nanowire networks is formed in the absence of these anti-cancer drug molecules in the reaction mixture. We used hyperspectral-enhanced dark field microscopy to examine the uptake of gold nanoparticles by breast cancer cells. Upon exposure to LIPUS, the release of the anti-cancer drug from the particle surface can be quantified by fluorescence measurements. This release of drug molecules along with trisodium citrate from the surface of gold nanoparticles by ultrasound resulted in their destabilization and subsequent aggregation, which could be visually observed through the change in the color of colloidal sol. Cancer cell viability was studied by MTT assay to examine the efficacy of this nanoparticle-based drug delivery system. Ultraviolet-visible spectroscopy, dynamic light scattering (DLS), and transmission electron microscope (TEM) analysis were used to characterize the nanoparticles and quantify anti-cancer drug release.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37475577

RESUMO

Computational modeling enables researchers to study and understand various complex biological phenomena in anticancer drug delivery systems (DDSs), especially nano-sized DDSs (NSDDSs). The combination of NSDDSs and therapeutic ultrasound (TUS), that is, focused ultrasound and low-intensity pulsed ultrasound, has made significant progress in recent years, opening many opportunities for cancer treatment. Multiple parameters require tuning and optimization to develop effective DDSs, such as NSDDSs, in which mathematical modeling can prove advantageous. In silico computational modeling of ultrasound-responsive DDS typically involves a complex framework of acoustic interactions, heat transfer, drug release from nanoparticles, fluid flow, mass transport, and pharmacodynamic governing equations. Owing to the rapid development of computational tools, modeling the different phenomena in multi-scale complex problems involved in drug delivery to tumors has become possible. In the present study, we present an in-depth review of recent advances in the mathematical modeling of TUS-mediated DDSs for cancer treatment. A detailed discussion is also provided on applying these computational models to improve the clinical translation for applications in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Simulação por Computador , Física
8.
ACS Nano ; 18(1): 410-427, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147452

RESUMO

Focused ultrasound-stimulated microbubbles can induce blood flow shutdown and ischemic necrosis at higher pressures in an approach termed antivascular ultrasound. Combined with conventional therapies of chemotherapy, immunotherapy, and radiation therapy, this approach has demonstrated tumor growth inhibition and profound synergistic antitumor effects. However, the lower cavitation threshold of microbubbles can potentially yield off-target damage that the polydispersity of clinical agent may further exacerbate. Here we investigate the use of a monodisperse nanodroplet formulation for achieving antivascular effects in tumors. We first develop stable low boiling point monodisperse lipid nanodroplets and examine them as an alternative agent to mediate antivascular ultrasound. With synchronous intravital imaging and ultrasound monitoring of focused ultrasound-stimulated nanodroplets in tumor microvasculature, we show that nanodroplets can trigger blood flow shutdown and do so with a sharper pressure threshold and with fewer additional events than conventionally used microbubbles. We further leverage the smaller size and prolonged pharmacokinetic profile of nanodroplets to allow for potential passive accumulation in tumor tissue prior to antivascular ultrasound, which may be a means by which to promote selective tumor targeting. We find that vascular shutdown is accompanied by inertial cavitation and complex-order sub- and ultraharmonic acoustic signatures, presenting an opportunity for effective feedback control of antivascular ultrasound.


Assuntos
Neoplasias , Humanos , Ultrassonografia , Acústica , Microvasos/diagnóstico por imagem , Microscopia Intravital , Microbolhas
9.
Sci Rep ; 13(1): 21301, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042841

RESUMO

Therapeutic ultrasound can be used to trigger the on-demand release of chemotherapeutic drugs from gold nanoparticles (GNPs). In the previous work, our group achieved doxorubicin (DOX) release from the surface of GNPS under low-intensity pulsed ultrasound (LIPUS) exposure. However, the specific release kinetics of ultrasound-triggered DOX release from GNPs is not known. Here, we present a release kinetics study of DOX from GNPs under ultrasound exposure for the first time. A novel dialysis membrane setup was designed to quantify DOX release from LIPUS-activated GNPs at 37.0 °C and 43.4 °C (hyperthermia temperature range). Contributions of thermal and non-thermal mechanisms of LIPUS-triggered DOX release were also quantified. Non-thermal mechanisms accounted for 40 ± 7% and 34 ± 5% of DOX release for 37.0 °C and 43.4 °C trials, respectively. DOX release under LIPUS exposure was found to follow Korsmeyer-Peppas (K-P) kinetics, suggesting a shift from a Fickian (static) to a non-Fickian (dynamic) release profile with the addition of non-thermal interactions. DOX release was attributed to an anomalous diffusion release mechanism from the GNP surface. A finite element model was also developed to quantify the acoustic radiation force, believed to be the driving force of non-thermal DOX release inside the dialysis bag.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Ouro , Liberação Controlada de Fármacos , Nanopartículas Metálicas/uso terapêutico , Diálise Renal , Doxorrubicina/uso terapêutico
10.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045236

RESUMO

The tumor microenvironment is characterized by dysfunctional endothelial cells, resulting in heightened vascular permeability. Many nanoparticle-based drug delivery systems attempt to use this enhanced permeability combined with impaired lymphatic drainage (a concept known as the 'enhanced permeability and retention effect' or EPR effect) as the primary strategy for drug delivery, but this has not proven to be as clinically effective as anticipated. The specific mechanisms behind the inconsistent clinical outcomes of nanotherapeutics have not been clearly articulated, and the field has been hampered by a lack of accessible tools to study EPR-associated phenomena in clinically relevant scenarios. While medical imaging has tremendous potential to contribute to this area, it has not been broadly explored. This work examines, for the first time, the use of multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a novel nanoscale contrast agent to examine tumor microenvironment characteristics noninvasively and in real-time. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features and (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability, and time-intensity curve (TIC) parameters were evaluated in both models prior to injection of doxorubicin liposomes. Consistently, LS174T tumors showed significantly different TIC parameters, including area under the rising curve (2.7x), time to peak intensity (1.9x) and decorrelation time (DT, 1.9x) compared to U87 tumors. Importantly, the DT parameter successfully predicted tumoral nanoparticle distribution (r = 0.86 ± 0.13). Ultimately, substantial differences in NB-CEUS generated parameters between LS174T and U87 tumors suggest that this method may be useful in determining tumor vascular permeability and could be used as a biomarker for identifying tumor characteristics and predicting sensitivity to nanoparticle-based therapies. These findings could ultimately be applied to predicting treatment efficacy and to evaluating EPR in other diseases with pathologically permeable vasculature.

11.
Cancers (Basel) ; 15(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136395

RESUMO

The effectiveness of tumor treatment heavily relies on the successful delivery of anticancer drugs [...].

12.
Sci Rep ; 13(1): 22687, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114526

RESUMO

The purpose of this study was to investigate the performances of the tumor response prediction prior to neoadjuvant chemotherapy based on quantitative ultrasound, tumour core-margin, texture derivative analyses, and molecular parameters in a large cohort of patients (n = 208) with locally advanced and earlier-stage breast cancer and combined them to best determine tumour responses with machine learning approach. Two multi-features response prediction algorithms using a k-nearest neighbour and support vector machine were developed with leave-one-out and hold-out cross-validation methods to evaluate the performance of the response prediction models. In a leave-one-out approach, the quantitative ultrasound-texture analysis based model attained good classification performance with 80% of accuracy and AUC of 0.83. Including molecular subtype in the model improved the performance to 83% of accuracy and 0.87 of AUC. Due to limited number of samples in the training process, a model developed with a hold-out approach exhibited a slightly higher bias error in classification performance. The most relevant features selected in predicting the response groups are core-to-margin, texture-derivative, and molecular subtype. These results imply that that baseline tumour-margin, texture derivative analysis methods combined with molecular subtype can potentially be used for the prediction of ultimate treatment response in patients prior to neoadjuvant chemotherapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Terapia Neoadjuvante/métodos , Quimioterapia Adjuvante , Ultrassonografia , Algoritmos , Estudos Retrospectivos
13.
Technol Cancer Res Treat ; 22: 15330338231211472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946517

RESUMO

Controlled, localized, and timely activation of nanosized drug delivery systems (NSDDSs), using an external stimulus such as therapeutic ultrasound (TUS), can improve the efficacy of cancer treatments compared to either conventional chemotherapy methods or passive NSDDSs alone. Specifically, TUS induces thermal and mechanical effects that trigger drug release from NSDDSs and overcomes drug delivery barriers in tumor microenvironments to allow nanoparticle drug carriers to penetrate more deeply into tumor tissue while minimizing side effects. This review highlights recent advancements, contemplates future prospects, and addresses challenges in using TUS-mediated NSDDSs for cancer treatment, encompassing preclinical and clinical applications.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Terapia por Ultrassom , Humanos , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Portadores de Fármacos , Microambiente Tumoral
14.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732235

RESUMO

Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.

15.
J Control Release ; 355: 552-578, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773959

RESUMO

The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs. While ultrasound is mainly used for diagnostic purposes, it can also be applied to affect cellular function and the delivery/release of anticancer drugs. Therapeutic ultrasound (TUS) has shown potential as both a stand-alone anticancer treatment and a method to induce targeted drug release from nanocarrier systems. TUS approaches have been used to overcome various physiological obstacles, including endothelial barriers, the tumor microenvironment (TME), and immunological hurdles. Combining nanomedicine and ultrasound as a smart DDS can increase in situ drug delivery and improve access to impermeable tissues. Furthermore, smart DDSs can perform targeted drug release in response to distinctive TMEs, external triggers, or dual/multi-stimulus. This results in enhanced treatment efficacy and reduced damage to surrounding healthy tissue or organs at risk. Integrating DDSs and ultrasound is still in its early stages. More research and clinical trials are required to fully understand ultrasound's underlying physical mechanisms and interactions with various types of nanocarriers and different types of cells and tissues. In the present review, ultrasound-mediated nano-sized DDS, specifically focused on cancer treatment, is presented and discussed. Ultrasound interaction with nanoparticles (NPs), drug release mechanisms, and various types of ultrasound-sensitive NPs are examined. Additionally, in vitro, in vivo, and clinical applications of TUS are reviewed in light of the critical challenges that need to be considered to advance TUS toward an efficient, secure, straightforward, and accessible cancer treatment. This study also presents effective TUS parameters and safety considerations for this treatment modality and gives recommendations about system design and operation. Finally, future perspectives are considered, and different TUS approaches are examined and discussed in detail. This review investigates drug release and delivery through ultrasound-mediated nano-sized cancer treatment, both pre-clinically and clinically.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Microambiente Tumoral
16.
Ultrasound Med Biol ; 49(5): 1288-1298, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822894

RESUMO

OBJECTIVE: The primary objective of this study was to quantify the contributions to drug release for thermal and non-thermal mechanisms in ultrasound-induced release from gold nanoparticles (GNPs) for the first time. METHODS: We studied doxorubicin (DOX) and curcumin release from the surface of GNPs using two different methods to induce drug release in an ex vivo tissue model: (i) localized tissue heating with a water bath and (ii) low-intensity pulsed ultrasound (LIPUS) exposure. Both methods have similar temperature profiles and can induce the release of both hydrophobic (curcumin) and hydrophilic (DOX) drugs from the surface of GNPs. Quantitative drug release in both cases was compared via fluorescence measurements. DISCUSSION: The water bath heating method induced drug release using thermal effects only, whereas LIPUS exposure induced drug release used a combination of thermal and non-thermal mechanisms. It was found that there were increases of 70 ± 16% (curcumin) and 127 ± 20% (DOX) in drug release when LIPUS was used to induce drug release (both thermal and non-thermal mechanisms) as compared with the water bath (thermal mechanisms only) mediated release. CONCLUSION: We determined that non-thermal mechanisms account for 41 ± 3% of curcumin release and 56 ± 4% of DOX release. It was concluded that in our ex vivo tissue model, the non-thermal mechanisms play a significant role in LIPUS-induced drug release from GNP drug carriers and that the contributions of non-thermal mechanisms to drug release depend on the type of anticancer drug loaded on the GNP surface.


Assuntos
Curcumina , Nanopartículas Metálicas , Nanopartículas , Linhagem Celular Tumoral , Ouro/química , Nanopartículas Metálicas/química , Doxorrubicina , Portadores de Fármacos , Nanopartículas/uso terapêutico , Nanopartículas/química , Água , Sistemas de Liberação de Medicamentos/métodos
17.
Cancers (Basel) ; 15(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672471

RESUMO

Currently, no numerical model for low-intensity pulsed ultrasound (LIPUS)-triggered anticancer drug release from gold nanoparticle (GNP) drug carriers exists in the literature. In this work, LIPUS-induced doxorubicin (DOX) release from GNPs was achieved in an ex vivo tissue model. Transmission electronic microscopy (TEM) imaging was performed before and after LIPUS exposure, and significant aggregation of the GNPs was observed upon DOX release. Subsequently, GNP surface potential was determined before and after LIPUS-induced DOX release, using a Zetasizer. A numerical model was then created to predict GNP aggregation, and the subsequent DOX release, via combining a thermal field simulation by solving the bioheat transfer equation (in COMSOL) and the Derjaguin, Landau, Verwey, and Overbeek (DLVO) total interaction potential (in MATLAB). The DLVO model was applied to the colloidal DOX-loaded GNPs by summing the attractive van der Waals and electrostatic repulsion interaction potentials for any given GNP pair. DLVO total interaction potential was found before and after LIPUS exposure, and an energy barrier for aggregation was determined. The DLVO interaction potential peak amplitude was found to drop from 1.36 kBT to 0.24 kBT after LIPUS exposure, translating to an 82.4% decrease in peak amplitude value. It was concluded that the interaction potential energy threshold for GNP aggregation (and, as a result, DOX release) was equal to 0.24 kBT.

18.
J Biophotonics ; 16(4): e202000209, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-32888381

RESUMO

Vascular disrupting agents disrupt tumor vessels, blocking the nutritional and oxygen supply tumors need to thrive. This is achieved by damaging the endothelium lining of blood vessels, resulting in red blood cells (RBCs) entering the tumor parenchyma. RBCs present in the extracellular matrix are exposed to external stressors resulting in biochemical and physiological changes. The detection of these changes can be used to monitor the efficacy of cancer treatments. Spectroscopic photoacoustic (PA) imaging is an ideal candidate for probing RBCs due to their high optical absorption relative to surrounding tissue. The goal of this work is to use PA imaging to monitor the efficacy of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) through quantitative analysis. Then, 4T1 breast cancer cells were injected subcutaneously into the left hind leg of eight BALB/c mice. After 10 days, half of the mice were treated with 15 mg/kg of DMXAA and the other half were injected with saline. All mice were imaged using the VevoLAZR X PA system before treatment, 24 and 72 hours after treatment. The imaging was done at six wavelengths and linear spectral unmixing was applied to the PA images to quantify three forms of hemoglobin (oxy, deoxy and met-hemoglobin). After imaging, tumors were histologically processed and H&E and TUNEL staining were used to detect the tissue damage induced by the DMXAA treatment. The total hemoglobin concentration remained unchanged after treatment for the saline treated mice. For DMXAA treated mice, a 10% increase of deoxyhemoglobin concentration was detected 24 hours after treatment and a 22.6% decrease in total hemoglobin concentration was observed by 72 hours. A decrease in the PA spectral slope parameters was measured 24 hours after treatment. This suggests that DMXAA induces vascular damage, causing red blood cells to extravasate. Furthermore, H&E staining of the tumor showed areas of bleeding with erythrocyte deposition. These observations are further supported by the increase in TUNEL staining in DMXAA treated tumors, revealing increased cell death due to vascular disruption. This study demonstrates the capability of PA imaging to monitor tumor vessel disruption by the vascular disrupting agent DMXAA.


Assuntos
Antineoplásicos , Neoplasias , Técnicas Fotoacústicas , Xantonas , Camundongos , Animais , Antineoplásicos/farmacologia , Neovascularização Patológica , Xantonas/farmacologia , Xantonas/uso terapêutico , Hemoglobinas
19.
IEEE Trans Biomed Eng ; 70(1): 42-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714094

RESUMO

With a typical 100-500 nm diameter, nanobubbles are a promising new-generation ultrasound contrast agent that paves ways for several applications, such as efficient drug delivery, molecular imaging, and assessment of vascular permeability. Due to their unique physical properties, nanobubbles exhibit distinct in vivo pharmacokinetics. We have shown that the first pass of the nanobubble bolus is usually accompanied by the appearance of a second bolus (wave) within a time range of about 15 minutes. Such phenomenon, to the best of our knowledge, has never been observed with conventional microbubbles and smaller molecular contrast agents used in MRI and CT. In a previous study, we showed the potential of this phenomenon in supporting cancer diagnosis. This study focuses on developing a new compartmental pharmacokinetic model that can be used to interpret the second-wave phenomenon. With this model, we can analyze more in-depth the roles of several physiological factors affecting the characteristics of the second-wave phenomenon.


Assuntos
Meios de Contraste , Sistemas de Liberação de Medicamentos , Ultrassonografia/métodos , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética/métodos , Microbolhas
20.
Bioact Mater ; 19: 642-652, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35600972

RESUMO

Nanoscale ultrasound contrast agents, or nanobubbles, are being explored in preclinical applications ranging from vascular and cardiac imaging to targeted drug delivery in cancer. These sub-micron particles are approximately 10x smaller than clinically available microbubbles. This allows them to effectively traverse compromised physiological barriers and circulate for extended periods of time. While various aspects of nanobubble behavior have been previously examined, their behavior in human whole blood has not yet been explored. Accordingly, herein we examined, for the first time, the short and long-term effects of blood components on nanobubble acoustic response. We observed differences in the kinetics of backscatter from nanobubble suspensions in whole blood compared to bubbles in phosphate buffered saline (PBS), plasma, or red blood cell solutions (RBCs). Specifically, after introducing nanobubbles to fresh human whole blood, signal enhancement, or the magnitude of nonlinear ultrasound signal, gradually increased by 22.8 ± 13.1% throughout our experiment, with peak intensity reached within 145 s. In contrast, nanobubbles in PBS had a stable signal with negligible change in intensity (-1.7 ± 3.2%) over 8 min. Under the same conditions, microbubbles made with the same lipid formulation showed a -56.8 ± 6.1% decrease in enhancement in whole blood. Subsequent confocal, fluorescent, and scanning electron microscopy analysis revealed attachment of the nanobubbles to the surface of RBCs, suggesting that direct interactions, or hitchhiking, of nanobubbles on RBCs in the presence of plasma may be a possible mechanism for the observed effects. This phenomenon could be key to extending nanobubble circulation time and has broad implications in drug delivery, where RBC interaction with nanoparticles could be exploited to improve delivery efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA