Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 5(7): 1174-1187, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414930

RESUMO

The gut microbiota influences intestinal barrier integrity through mechanisms that are incompletely understood. Here we show that the commensal microbiota weakens the intestinal barrier by suppressing epithelial neuropilin-1 (NRP1) and Hedgehog (Hh) signaling. Microbial colonization of germ-free mice dampens signaling of the intestinal Hh pathway through epithelial Toll-like receptor (TLR)-2, resulting in decreased epithelial NRP1 protein levels. Following activation via TLR2/TLR6, epithelial NRP1, a positive-feedback regulator of Hh signaling, is lysosomally degraded. Conversely, elevated epithelial NRP1 levels in germ-free mice are associated with a strengthened gut barrier. Functionally, intestinal epithelial cell-specific Nrp1 deficiency (Nrp1ΔIEC) results in decreased Hh pathway activity and a weakened gut barrier. In addition, Nrp1ΔIEC mice have a reduced density of capillary networks in their small intestinal villus structures. Collectively, our results reveal a role for the commensal microbiota and epithelial NRP1 signaling in the regulation of intestinal barrier function through postnatal control of Hh signaling.


Assuntos
Proteínas Hedgehog , Neuropilina-1 , Camundongos , Animais , Neuropilina-1/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Bactérias/metabolismo
2.
mBio ; 10(5)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641089

RESUMO

Atherosclerotic plaque development depends on chronic inflammation of the arterial wall. A dysbiotic gut microbiota can cause low-grade inflammation, and microbiota composition was linked to cardiovascular disease risk. However, the role of this environmental factor in atherothrombosis remains undefined. To analyze the impact of gut microbiota on atherothrombosis, we rederived low-density lipoprotein receptor-deficient (Ldlr-/- ) mice as germfree (GF) and kept these mice for 16 weeks on an atherogenic high-fat Western diet (HFD) under GF isolator conditions and under conventionally raised specific-pathogen-free conditions (CONV-R). In spite of reduced diversity of the cecal gut microbiome, caused by atherogenic HFD, GF Ldlr-/- mice and CONV-R Ldlr-/- mice exhibited atherosclerotic lesions of comparable sizes in the common carotid artery. In contrast to HFD-fed mice, showing no difference in total cholesterol levels, CONV-R Ldlr-/- mice fed control diet (CD) had significantly reduced total plasma cholesterol, very-low-density lipoprotein (VLDL), and LDL levels compared with GF Ldlr-/- mice. Myeloid cell counts in blood as well as leukocyte adhesion to the vessel wall at the common carotid artery of GF Ldlr-/- mice on HFD were diminished compared to CONV-R Ldlr-/- controls. Plasma cytokine profiling revealed reduced levels of the proinflammatory chemokines CCL7 and CXCL1 in GF Ldlr-/- mice, whereas the T-cell-related interleukin 9 (IL-9) and IL-27 were elevated. In the atherothrombosis model of ultrasound-induced rupture of the common carotid artery plaque, thrombus area was significantly reduced in GF Ldlr-/- mice relative to CONV-R Ldlr-/- mice. Ex vivo, this atherothrombotic phenotype was explained by decreased adhesion-dependent platelet activation and thrombus growth of HFD-fed GF Ldlr-/- mice on type III collagen.IMPORTANCE Our results demonstrate a functional role for the commensal microbiota in atherothrombosis. In a ferric chloride injury model of the carotid artery, GF C57BL/6J mice had increased occlusion times compared to colonized controls. Interestingly, in late atherosclerosis, HFD-fed GF Ldlr-/- mice had reduced plaque rupture-induced thrombus growth in the carotid artery and diminished ex vivo thrombus formation under arterial flow conditions.


Assuntos
Microbiota/fisiologia , Placa Aterosclerótica/metabolismo , Receptores de LDL/deficiência , Animais , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Microbiota/genética , Placa Aterosclerótica/genética , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA