Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 240: 109806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272381

RESUMO

Primary open-angle glaucoma (POAG) is the most common type of glaucoma leading to blindness. The search for ways to prevent/treat this entity is one of the main challenges of today's ophthalmology. One of such solution seems to be biologically active substances of natural origin, such as genistein (GEN), which can affect the function of isolated trabecular meshwork by the inhibition of protein tyrosine kinase. However, the role of GEN in viability as well as myofibroblastic transformation in human trabecular meshwork cells stimulated by TGF-ß is unknown. Using human trabecular meshwork cells (HTMCs) we investigated the effect of genistein on cell viability and myofibroblastic transformation stimulated by TGF-ß1 and TGF-ß2. Using Real-Time PCR, western blot and immunofluorescence we determined the effect on the expression changes of αSMA, TIMP1, collagen 1 and 3 at mRNA and protein level. We found that genistein increases the viability of HTMCs (1, 2, 3 µg/ml; P < 0.05 and 4, 5, 10, 15, 20 µg/ml; P < 0.01). Moreover, we found that addition of 10, 15 and 20 µg/ml is able to prevent myofibroblastic transformation of HTMCs by decreasing αSMA, TIMP1, collagen 1 and 3 mRNA and protein expression (P < 0.01). Based on the obtained results, we can conclude that genistein is a potential factor that can prevent the myofibroblastic transformation of HTMCs accompanying glaucoma. Describing GEN influence on myofibroblastic transformation processes in HTMC allows us to conclude that it can be considered a potential therapeutic agent or a substance supporting treatment in patients with glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Genisteína/farmacologia , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/prevenção & controle , Glaucoma de Ângulo Aberto/genética , Malha Trabecular/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Glaucoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Colágeno/metabolismo
2.
Nutrients ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745209

RESUMO

This study aims to investigate the effects of a high-fat, high-fructose (HF/HFr) diet on metabolic/endocrine dysregulations associated with letrozole (LET)-induced Polycystic Ovarian Syndrome (PCOS) in prepubertal female mice. Thirty-two prepubertal C57BL/6 mice were randomly divided into four groups of eight and implanted with LET or a placebo, with simultaneous administration of an HF/HFr/standard diet for five weeks. After sacrifice, the liver and blood were collected for selected biochemical analyses. The ovaries were taken for histopathological examination. The LET+HF/HFr group gained significantly more weight than the LET-treated mice. Both the LET+HF/HFr and the placebo-treated mice on the HF/HFr diet developed polycystic ovaries. Moreover the LET+HF/HFr group had significantly elevated testosterone levels, worsened lipid profile and indices of insulin sensitivity. In turn, the HF/HFr diet alone led to similar changes in the LET-treated group, except for the indices of insulin sensitivity. Hepatic steatosis also occurred in both HF/HFr groups. The LET-treated group did not develop endocrine or metabolic abnormalities, but polycystic ovaries were seen. Since the HF/HFr diet can cause substantial metabolic and reproductive dysregulation in both LET-treated and placebo mice, food items rich in simple sugar-particularly fructose-and saturated fat, which have the potential to lead to PCOS progression, should be eliminated from the diet of young females.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Animais , Feminino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Frutose , Letrozol/efeitos adversos , Camundongos Endogâmicos C57BL , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/metabolismo
3.
Gen Comp Endocrinol ; 299: 113615, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950584

RESUMO

The present study aimed to characterize the role of spexin (SPX) in maintaining glucose and lipid homeostasis in vivo in rats with diet-induced obesity. The in vitro effect of spexin on metabolic and endocrine functions of adipocytes isolated from obese rats was also investigated. The in vivo experiment was conducted on rats with diet-induced obesity and administered with SPX for 7 days. Lipid and carbohydrate parameters, liver markers, and hormonal profile were measured. In in vitro studies, adipocytes isolated from obese rats were used. The effect of SPX on lipolysis, lipogenesis, and leptin secretion from fat cells was assessed. The results showed that short-term administration of SPX causes weight loss, increases insulin sensitivity, and improves the metabolic state of obese rats. The in vitro experiments showed that spexin and its receptors, namely galanin receptor 2 (GALR2) and galanin receptor 3 (GALR3), were expressed in various fat depots and in adipocytes from obese rats. We also found that the addition of spexin increased the basal and isoproterenol-stimulated lipolysis and reduced the basal and insulin-stimulated lipogenesis in adipocytes isolated from obese rats. Molecular analysis showed that SPX activated hormone-sensitive lipase (HSL) phosphorylation and upregulated perilipin and HSL mRNA expression. These results suggest that SPX regulates metabolism of obese rats by affecting lipolysis and lipogenesis in adipocytes. Moreover, the present study for the first time demonstrates that SPX modulates leptin synthesis and secretion from isolated adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Glucose/metabolismo , Insulina/metabolismo , Lipogênese , Lipólise , Obesidade/prevenção & controle , Hormônios Peptídicos/administração & dosagem , Adipócitos/metabolismo , Animais , Técnicas In Vitro , Resistência à Insulina , Lipídeos/análise , Masculino , Obesidade/metabolismo , Obesidade/patologia , Fosforilação , Ratos , Ratos Wistar
4.
J Diabetes ; 9(4): 353-361, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27106635

RESUMO

BACKGROUND: Obestatin has a role in regulating food intake and energy expenditure, but the roles of obestatin and the GPR39 receptor in obesity and type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively) are not well understood. The aim of the present study was to investigate changes in obestatin and GPR39 in pathophysiological conditions like obesity, T1DM, and T2DM. METHODS: Using rat models of diet-induced obesity (DIO), T1DM and T2DM (n = 14 per group), obestatin, its precursor protein preproghrelin, and GPR39 expression was investigated in tissues involved in glucose and lipid homeostasis regulation. Furthermore, serum obestatin and ghrelin concentrations were determined. RESULTS: Serum obestatin concentrations were positively correlated with glucagon (r = 0.6456; P < 0.001) and visfatin (r = 0.5560; P < 0.001), and negatively correlated with insulin (r = -0.4362; P < 0.05), adiponectin (r = -0.3998; P < 0.05), and leptin (r = -0.4180; P < 0.05). There were differences in GPR39 and preproghrelin expression in the three animal models. Hepatic GPR39 and preproghrelin mRNA expression was greater in T1DM, T2DM, and obese rats than in lean controls, whereas pancreatic GPR39 mRNA and protein and preproghrelin mRNA expression was decreased in T1DM, T2DM, and DIO rats. Higher GPR39 and preproghrelin protein and mRNA levels were found in adipose tissues of T1DM compared with control. In adipose tissues of T2DM and DIO rats, GPR39 protein levels were lower than in lean or T1DM rats. Preproghrelin mRNA was higher in adipose tissues of T1DM, T2DM, and DIO than lean rats. CONCLUSION: We hypothesize that changes in obestatin, GPR39, and ghrelin may contribute to metabolic abnormalities in T1DM, T2DM, and obesity.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Expressão Gênica , Obesidade/fisiopatologia , Hormônios Peptídicos/genética , Receptores Acoplados a Proteínas G/genética , Análise de Variância , Animais , Glicemia/metabolismo , Western Blotting , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Grelina/sangue , Grelina/genética , Grelina/metabolismo , Glucagon/sangue , Insulina/sangue , Masculino , Obesidade/sangue , Hormônios Peptídicos/sangue , Hormônios Peptídicos/metabolismo , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA